

X-Dashboard Documentation V1.0
The XDashboard plugin is a powerful and versatile Dashboard component plugin designed for

seamless development. It offers a wide range of features to enhance dashboard display and

manipulation while cutting down development time by more than 50%.

Quick Start:

To utilize XDashboard:

1. Follow the instructions for installing the package provided by the admin document.

2. Once the package is installed, you can directly import any XDashboard component like any

other ESM import.

Feature Configuration:
XDashboard comes jam packed with a bunch of components to cut down development time, and so

are the options to customize them as per your requirements.

TODO:

XDashboard comes loaded with a To-Do’s component for managing your important task along with

the ability to not just see but also change and update priority, edit details and marking them as

completed.

ToDo’s take object array as an input for showing data, the object has following props:

Props: Type: Values: Description:

Id Number Unique integer Should be unique id

Task String String value The task to be added in list

Completed Boolean True/False When the task is marked

completed

Priority String Medium/High/Low The task priority assigned to each
task item

Input Data Sample:

Usage Example:

Action Logger:

XDashboard Action Logger component allows for keeping track of your important system logs along

with the ability to not just see but also categories and filter data on multiple parameters and

marking them as completed.

Actions Logger take object array as an input for showing data, the object has following props:

Props: Type: Values: Description:

Id Number Unique integer Should be unique id

timestamp String Date Time Stamp The Date and time of the event

user String String Which user performed the task

role String Users Role The user’s role in the system

actionType String Users Action The action category triggered

description String Action Log Log statement

Input Sample:

Usage Example:

Complete Code Snippet:

Notifications:

XDashboard Notifications component allows for keeping track of your important Notifications along

with the ability to not just see but also mark them as read, and remove them along with badge

indicators, indicating unread notifications.

notifications take object array as an input for showing data, the object has following props:

Props: Type: Values: Description:

Id Number Unique integer Should be unique id

Message String Notification The notification message

isRead Boolean True OR False Mark notification as read

Sample Input:

Usage Example:

Support Tickets:

XDashboard Support Tickets component allows for keeping track of your tickets along with the

ability to not just see but also mark them as resolved or remove them along with filter options on

ticket list.

Support Tickets Component take object array as an input for showing data, the object has following

props:

Props: Type: Values: Description:

Id Number Unique integer Should be unique id

timestamp String Date Time Stamp The Date and time of the event

Description String String Issue details

Status String Ticket status Ticket open or closed

assignedTo String Username Support providing user

priority String Priority Priority of tickets

category String ticket Category Category assigned to ticket

image String Image path/url Path of the attached image or url

Sample Input:

Usage Example:

Calendar:

XDashboard Calendar component allows for keeping track of your Events along with the ability to

Summarize all events, which can be toggled to or hide based on preference, along with the option to

show/hide weekends, not just that but also, options for changing calendar views into monthly, daily,

weekly, and event list format, along with the added ability to quickly jump onto present day, in case

you got lost into dates, and last but not the least, the ability to quickly add or manipulate calendar

events by clicking, dragging and dropping.

Calendar Component take object array as an input for showing data, the object has following props:

Props: Type: Purpose: Description:

Id string Event identity Should be unique id

description String Event Details The details of event

start String Starting Date Event Start date defined

startTime String Starting time slot Event Starts at the time defined

end String Ending date Event End Date defined

endTime String Ending time slot Event ends at the time defined

allDay boolean Full day Event Is it a Complete day event

Title String Event Title Event title description

Sample Input:

Example Usage:

Charts:

XDashboard provide more than eight charts out of the box which can be accessed by a chart Provider

component:

• Bar Chart (horizontal, vertical, stacked)

• Line Chart

• Area Chart

• Scatter Chart

• Pie Chart

• Radar Chart

• Doughnut Chart

• Bubble Chart

Chart Provider:

Chart Provider requires four paramers, where data and chart-type are the two mandatory properties

for rendering of charts, Additionally, options and theme properties can be specified:

• The ‘data’ parameters intakes Dataset of that need to be charted.

• ‘chartType’ specifies the type of chart to be rendered.

• ‘options’ property provides additional configurations for appearance and sub types of charts

• ‘theme’ property can be utilized for configurating light and dark theme of chart component on

individual level.

Sample Usage:

Each provider property can further be configured as follows:

Data Property:

data property is a required field and It should be structured as an object of two arrays labels and

datasets.

While structuring the data object:

• datasets array is required, while other fields can be made optional based on the chart being

accessed.

• datasets, is an array of objects, where each object must have a two properties, data, and label.

o data property will be an array of numeric values.

o label property will act as legend for the charts.

• The Axes can be additionally specified for the data via options property of chart-Provider.

• The labels property of chart and Data property of Datasets array must have equal length

otherwise labels will be cycled from starting index for the remaining data points.

Following examples shows how data should be passed to chart provider based on above key points.

Example:

Chart-Type Property:

chartType property is mandatory for determining the type of chart.

Following table can be referred for choosing the right chart type input.

Chart chartType value

Bar Chart bar

Line Chart line

Area Chart area

Pie Chart pie

Scatter Chart scatter

Radar/Spider Chart radar

Doughnut Chart doughnut

Bubble Chart bubble

Provider ‘Options’ Property configuration:

Options is an optional property that has following effect:

Options property provides two main accessibilities.

• options property is responsible for customization of chart. Chart customization can include

customizing background, colour, border, border radius along with other comprehensive

customizations, refer to the table below for available options.

• The barChartType property can be specified in options object which is responsible for

displaying bar charts horizontally or vertically. To show stacked charts, the barChartStacked

property can also be specified in options object.

options prop type description

barChartType string Shows the bars in Bar Charts in vertical or
horizontal direction. Value of barChartType can

be either vertical or horizontal. By default, bars
are in vertical direction.

barChartStacked boolean Makes the datasets in Bar Chart stacked. The
default value is false.

borderRadius number Changes radius of the border

backgroundColor string, string[] Changes the background color of chart

borderWidth number Changes the border width

fillColor string, string[] Changes the color of area in Area Chart

tension float, number Makes the line/border curve smooth

hoverRadius number Changes the radius on hover (usually used in
bubble or scatter chart)

borderColor string Changes the color of border/line

xGridColor string Changes the color of grid line on x-axis

yGridColor string Changes the color of grid line on y-axis

hoverBackgroundColor string Changes the color of arc on hover (usually used in
Doughnut and Pie Charts)

xTicksColor string Changes the color of ticks on x-axis

yTicksColor string Changes the color of ticks on y-axis

radius number Changes the size/radius of the bubble

xAxisLabel string Assigns label name on x-axis according to chart
data

yAxisLabel string Assigns label name on y-axis according to chart
data

barThickness number Changes the thickness of bar (used in Bar Charts)

Themes:

Chart provider provides both dark and light theme controls out of the box, which can be

utilised by passing the theme props. Chart themes defaults as light, For dark theme, the

‘dark’ keyword can be passed as theme prop value.

Bar Charts:

XDashboard provides four bar chart types out of the box:

• Horizontal Bar chart.

• Stacked Horizontal Bar chart.

• Vertical Bar chart.

• Stacked Vertical Bar chart.

Each bar chart can be accessed explicitly based on the options provided to the chart provider

component.

Following are examples of how each chart can be used in a react project.

Horizontal Bar chart:

Stacked Horizontal Bar chart:

Vertical Bar Chart:

Stacked Vertical Bar chart:

Line Chart:

Line Charts adhere to same structure and parameter requirements as Bar Charts, ensuring seamless

integration and consistent usage across different chart types.

Area Chart:

Area Charts follow the same guidelines as Line Charts and Bar Charts for accessing charts through the

Chart Provider. By following the established guidelines, you can seamlessly integrate Area Charts into

their visualizations alongside Line Charts and Bar Charts, facilitating a cohesive and standardized

approach to data representation.

Example:

Scatter Chart:

Scatter Charts data field in datasets array should have x and y coordinates to determine the value of

“bubbles” along the x and y axis, while remaining other data values and setting will be same as area

chart.

Sample Input:

Sample Example:

Pie Chart:

Pie chart uses the same dataset model as area chart, while label field within the 'datasets' array is

optional.

Example:

Doughnut Chart:

The structure of the data object for Doughnut Charts closely resembles that of Pie Charts and hence

same dataset object model can be used for rendering it.

Example:

Bubble Chart:

Bubble Charts require additional parameters for each data point to draw the bubble on chart area.

Following are the required object properties for a bubble chart:

• For a bubble to be rendered on a specific data point, a x & y Coordinates are required which

represents X-axis and Y-axis respectively.

• For size of bubble, the “radius” is necessary, which can be passed along as ‘r’ within the data

array objects.

Sample Input:

Sample Example:

Radar chart:

Radar chart can be utilized by passing ‘radar’ as the char type along with data.

Sample Example:

