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Dear Reader,

We hope you enjoy and find insight in this timely collection of articles that explores the fast-moving impact 
of artificial intelligence (AI) and machine learning in medicine. From clinical applications to imaging inter-
pretation, infectious-disease surveillance to collaborative workflows, and real-time diagnostics to ethical con-
siderations, each article provides a unique perspective on the challenges, opportunities, and future directions 
of AI in medicine. 

In addition to needed technical advances, AI must meet the same bar for clinical evidence that is expected 
from other clinical interventions. Evidence that an AI tool will perform in a safe and effective manner must 
be demonstrated using randomized controlled trials designed to test the tool against an established standard. 
To meet clinical and technology innovators’ needs, the forthcoming journal, NEJM AI, aims to provide a platform 
for rigorous evidence, resource sharing, and thoughtful discussions that will shape the integration of AI in 
medicine. Ahead of its publication in 2024, this collection of previously-published articles from the New England 
Journal of Medicine, NEJM Catalyst Innovations in Care Delivery, and NEJM Evidence exemplifies the high-quality content 
you can also expect from NEJM AI.

“Artificial Intelligence in Medicine,” an Editorial from the New England Journal of Medicine, highlights the trans-
formative potential of AI in medicine and provides the context for the 2024 NEJM AI journal launch. An NEJM 
Review Article, “Artificial Intelligence and Machine Learning in Clinical Medicine, 2023,” examines the current 
landscape of AI in medicine, offering a comprehensive overview of the applications and implications.

Two new NEJM Review Articles explore how the latest innovations in AI can be used in different clinical appli-
cations. “The Current and Future State of AI Interpretation of Medical Images” explores cutting-edge advance-
ments in AI technology in medical imaging. “Advances in Artificial Intelligence for Infectious-Disease Surveillance” 
highlights AI and its role in monitoring and predicting infectious diseases. 

“Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine,” a recent NEJM Special Report, critically 
examines the potential of AI chatbots in health care, focusing on the ethical considerations and practical impli-
cations for clinical practice. While the 2019 NEJM Review Article, “Machine Learning in Medicine,” explains 
how machine learning can analyze vast amounts of data to assist in prognosis, diagnosis, treatment selection, 
clinician workflow, and expanding the availability of clinical expertise, ultimately leading to more personalized 
and efficient health care.

“Using AI to Empower Collaborative Team Workflows: Two Implementations for Advance Care Planning and 
Care Escalation,” showcases a compelling Case Study from NEJM Catalyst Innovations in Care Delivery, demonstrating 
how Stanford Medicine tackles challenges in implementing machine learning (ML) models in care delivery and 
describing two real-world pilots focusing on advance care planning and reducing unplanned escalations of care. 
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An Original Article from NEJM Evidence, “Real-Time Artificial Intelligence–Based Optical Diagnosis of Neoplastic 
Polyps during Colonoscopy,” explores the potential of AI in cancer screening. In this study, colonoscopists diag-
nosed small colonic polyps as benign or malignant on the basis of their appearance. The results were compared 
in real time to see if CADx could distinguish among polyps requiring removal.

In reading this collection, we hope you discover the range of AI applications in medicine, guided by experts 
who prioritize transparency and uphold the highest standards. We look forward to identifying and evaluating 
more state-of-the-art applications of artificial intelligence to clinical medicine with NEJM AI, which launches 
in early 2024. Learn more at ai.nejm.org. 

Sincerely, 
NEJM AI Editorial Team

Isaac S. Kohane, MD, PhD  Eric J. Rubin, MD, PhD Charlotte Haug, MD, PhD 
EDITOR-IN-CHIEF, NEJM AI EDITOR-IN-CHIEF, NEJM  EXECUTIVE EDITOR 

Andrew L. Beam, PhD Arjun K. Manrai, PhD  
DEPUTY EDITOR  DEPUTY EDITOR 
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Artificial Intelligence in Medicine

Andrew L. Beam, Ph.D., Jeffrey M. Drazen, M.D., Isaac S. Kohane, M.D., Ph.D., 
Tze‑Yun Leong, Ph.D., Arjun K. Manrai, Ph.D., and Eric J. Rubin, M.D., Ph.D.

Artificial intelligence (AI) has gained recent 
public prominence with the release of deep-
learning models that can generate anything 
from art to term papers with minimal human 
intervention. This development has reinvigorated 
discussion of the existing and potential roles of 
AI in all aspects of life. Among the wide range 
of fields with possible applications of AI, how-
ever, medicine stands out as one in which there 
is tremendous potential along with equally sub-
stantial challenges. At the Journal, we are seeing 
a rapidly increasing number of manuscript sub-
missions that consider some aspect of AI applied 
to medicine. Given this enormous interest, we 
have now published in this issue of the Journal 
the first articles in a new series, AI in Medicine, 
that will consider both the reasonably estab-
lished and the growing possible roles of AI and 
machine learning technologies in all aspects of 
health and health care.1,2 Moreover, to further 
our commitment to this area, we are also an-
nouncing the 2024 launch of a new journal, 
NEJM AI (ai . nejm . org), which aims to provide a 
forum for high-quality evidence and resource 
sharing for medical AI along with informed dis-
cussions of its potential and limitations.

As a medical journal, we face two new pub-
lishing challenges for NEJM AI. The first is the 
breadth of potential AI applications. There is 
virtually no area in medicine and care delivery 
that is not already being touched by AI. For ex-
ample, AI-driven applications are available to 
capture the dictation of medical notes; many 
such applications are attempting to synthesize 
patient interviews and laboratory test results to 
write notes directly, without clinician interven-

tion. AI is playing an increasing role in health 
insurance coverage, assisting caregivers in mak-
ing claims and payors in adjudicating them. We 
have already seen many published reports that 
use AI to interpret images — radiographs, histol-
ogy, and optic fundi. Tools that utilize AI have 
come into increasing use in analyzing and inter-
preting large research databases containing in-
formation ranging from laboratory findings to 
clinical data. All these tools offer the potential 
for increased efficiency and may, perhaps, render 
insights that are difficult to attain with more 
traditional data-analysis methods. However, new 
AI methods are not necessarily a panacea; they 
can be brittle, they may work only in a narrow 
domain, and they can have built-in biases that 
disproportionally affect marginalized groups. 
This range of AI applications requires a diverse 
group of authors, editors, and reviewers, even 
though the pool of individuals with appropriate 
knowledge is still relatively small.

Second, expertise in the field of AI and ma-
chine learning is closely linked to commercial 
applications. The underlying technology is rapidly 
changing and, in many cases, is being produced 
by companies and academic investigators with 
financial interests in their products. For a grow-
ing class of large-scale AI models, companies 
that have the necessary resources may be the 
only ones able to push the frontier of AI systems. 
Since many such models are not widely available 
yet, hands-on experience and a detailed under-
standing of a model’s operating characteristics 
often rest with only a small handful of model 
developers. Despite the potential for financial 
incentives that could create conflicts of interest, 
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a deep understanding of AI and machine learn-
ing and their uses in medicine requires the 
participation of people involved in their develop-
ment. Thus, in the series of AI articles we are 
publishing in the Journal and in NEJM AI, we will 
not restrict authorship and editorial control to 
persons without relevant financial ties but will 
follow a policy of transparency and disclosure.

Medicine is much different from other areas 
where AI is being applied. AI enables new dis-
coveries and improved processes in the entire 
health care continuum; ethical, governance, and 
regulatory considerations are critical in the de-
sign, implementation, and integration of every 
component of the AI applications and systems. 
Because of concerns about both utility and 
safety, new applications will generally have to 
adhere to the same standards applied to other 
medical technologies. This will require a level of 
rigor in testing similar to that used in other 
areas of medicine, but it also can present chal-
lenges, such as the “dataset shift” that can result 
when there is a mismatch between the data set 
with which an AI system was developed and the 
data on which it is being deployed.3 This sum-

mer, we hope to begin evaluating research stud-
ies for NEJM AI that bring careful methodology 
to understanding how to use AI and machine 
learning approaches in medicine. And as always, 
we welcome such studies at the Journal. We are 
excited to use our resources to encourage high-
quality work in AI and to disseminate it with the 
same standards that we apply to everything we 
publish.

Disclosure forms provided by the authors are available with 
the full text of this editorial at NEJM.org.

From the Department of Epidemiology, Harvard T.H. Chan 
School of Public Health (A.L.B.), and the Department of Bio‑
medical Informatics, Harvard Medical School (I.S.K., A.K.M.) 
— both in Boston; and the School of Computing, National Uni‑
versity of Singapore, Singapore (T.‑Y.L.). 

1. Haug CJ, Drazen JM. Artificial intelligence and machine 
learning in clinical medicine, 2023. N Engl J Med 2023; 388: 
1201-8.
2. Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 
as an AI chatbot for medicine. N Engl J Med 2023;388:1233-9.
3. Finlayson SG, Subbaswamy A, Singh K, et al. The clinician 
and dataset shift in artificial intelligence. N Engl J Med 2021; 
385: 283-6.

DOI: 10.1056/NEJMe2206291
Copyright © 2023 Massachusetts Medical Society.

Prophylactic Antibiotics for Vaginal Delivery 
— Benefits and Possible Harms

Jeanne S. Sheffield, M.D.

Ignaz Semmelweis, a Hungarian physician often 
labeled the “Savior of Women,” pioneered the use 
of antiseptic techniques to decrease puerperal 
fever. Although his seminal 1861 publication, 
The Etiology, Concept and Prophylaxis of Childbed Fever, 
was poorly received at the time, it is now the 
foundation for contemporary preventative obstet-
ric practices, including routine hand washing. 
Despite this progress, maternal infection remains 
one of the top causes of maternal death world-
wide and is currently ranked third behind hyper-
tension and hemorrhage. The World Health Or-
ganization (WHO) has reported that as of 2017, 
approximately 810 women died each day from 
preventable causes related to pregnancy and 
childbirth. Of these deaths, 94% occurred in low- 
and middle-income countries, and 10.7% were 
directly caused by infection or sepsis.1 The major-

ity of these deaths were in sub-Saharan Africa 
and South Asia.

The WHO lists the improvement of maternal 
health as one of its key priorities and, along with 
the United Nations, has called for a 70% de-
crease in maternal mortality by 2030.2,3 Because 
sepsis is one of the leading causes of maternal 
complications and death, the WHO convened an 
international panel of experts to specifically ad-
dress this condition. The resultant 2017 WHO 
Statement on Maternal Sepsis established crite-
ria for the diagnosis of maternal sepsis and de-
tailed the Global Maternal and Neonatal Sepsis 
Initiative and its vision of reducing maternal and 
neonatal deaths related to sepsis. This effort 
included the development and testing of strate-
gies to prevent, detect, and successfully manage 
maternal and neonatal sepsis.4

https://ai.nejm.org/
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Review Article

Dr. Haug, the International Correspondent of the 
Journal, can be contacted at  charlottejohanne@   
gmail . com or at Aamotveien 63, 0880 Oslo, 
Norway.

N Engl J Med 2023;388:1201-8.
DOI: 10.1056/NEJMra2302038
Copyright © 2023 Massachusetts Medical Society.

As computers and the concept of artificial intelligence (AI) 
were almost simultaneously developed in the 1940s and 1950s, the field of 
medicine was quick to see their potential relevance and benefit.1,2 In 1959, 

Keeve Brodman and colleagues claimed that “the making of correct diagnostic 
interpretations of symptoms can be a process in all aspects logical and so com-
pletely defined that it can be carried out by a machine.”3 Eleven years later, William 
B. Schwartz wrote in the Journal, “Computing science will probably exert its major 
effects by augmenting and, in some cases, largely replacing the intellectual func-
tions of the physician.”4 He predicted that by the year 2000, computers would have 
an entirely new role in medicine, acting as a powerful extension of the physician’s 
intellect.

However, by the late 1970s, there was disappointment that the two main ap-
proaches to computing in medicine — rule-based systems and matching, or pat-
tern recognition, systems — had not been as successful in practice as one had 
hoped. The rule-based systems were built on the hypothesis that expert knowledge 
consists of many independent, situation-specific rules and that computers can 
simulate expert reasoning by stringing these rules together in chains of deduction. 
The matching strategies tried to match a patient’s clinical characteristics with a 
bank of “stored profiles,” which we now refer to as “illness scripts,”5 of the find-
ings in a given disease. More effort was put into understanding the clinical deci-
sion-making process itself.6 It became clear that the key deficiencies in most 
previous programs stemmed from their lack of pathophysiological knowledge. 
When such knowledge was incorporated, the performance greatly improved.

Nevertheless, in the 1980s, computers were not up to the task. The rule-based 
systems had by 1987 proved useful in a variety of commercial tasks but had not 
worked in clinical medicine. Indeed, Schwartz and colleagues noted that “the pro-
cess is so slow that it is impractical even with modern high-speed computers.”7 
They continued: “After hearing for several decades that computers will soon be able 
to assist with difficult diagnoses, the practicing physician may well wonder why the 
revolution has not occurred.”7

Pro gr ess in Data Science

In the 1950s, computers were large and slow. The first hard-disk drive was the IBM 
Model 350 Disk File, introduced in 1956. It had a total storage capacity of 5 million 
characters (just under 5 MB). The first hard drive to have more than 1 GB in capac-
ity was the IBM 3380, introduced in 1980. It was the size of a refrigerator and 
weighed 550 lb (250 kg); the price was $100,000. But integrated-circuit technology 
was improving. In 1965, Gordon Moore, cofounder of Fairchild Semiconductor and 
Intel, predicted that the number of transistors in an integrated circuit, and, hence, 
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Figure 1. Improvements over 50 Years in the Ability of Computers to Store and Process Data.

Panel A shows advances in data storage, in terms of both physical size and cost per unit of storage. RAMAC denotes random access 
method of accounting and control. Panel B shows advances in the speed of computing. Each dot represents an individual machine type 
and the approximate year of its introduction. These improvements in storage and speed have allowed machine learning to progress 
from a dream to reality. Data in both panels are estimates from many types of system architecture and are derived from multiple public 
sources.
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its potential computing power, would double ev-
ery 2 years. His prediction was right; this change 
in semiconductor density is known as Moore’s 
law. However, Moore’s law tells us more than 
the number of transistors per square centimeter, 
since other aspects of technological progress, 
such as processing speed and the price of elec-
tronic products, are strongly linked to Moore’s 
law. With more dense circuits, computer memo-
ry and computing speeds increased, and today, 
pocket-sized devices that are more powerful than 
the 1980s supercomputers, which took up entire 
rooms, are common and available at a fraction 
of the price (Fig. 1).

Progress in data science is not simply a matter 
of increased performance, speed, and storage. In 
addition to the type of information found in librar-
ies, data generated in organizations, and estab-
lished systems designed to gather and codify data, 
new forms of technology can use data that are 
both people-generated and machine-generated. 
These data are often chaotic and unstructured. 
Data now come from many additional sources, 
including social networks, blogs, chat rooms, 
product-review sites, communities, website pag-
es, email, documents, images, videos, and music, 
along with wearable and environmental sensors. 
Many people open aspects of their medical re-
cords and personal genetic data for online ac-
cess by anyone. Storage capacity is so great that 
vast portions of the corpus of recorded human 
knowledge and activity can be stored and read-
ily accessed.

Once we had the data, we needed more than 
data; we needed ways to identify and process the 
data. Google became the leader in online search-
ing by harnessing the searches performed by 
others to identify what people wanted to know. 
This required a second revolution, mathematical 
algorithms that could rapidly, and with reason-
able reliability, track this behavior and aid the 
end user in finding particular information. More 
dense information storage and faster computing 
allowed for practical, real-time solutions of math-
ematical expressions that could be used to find 
relationships in the data that were previously un-
knowable. As a result, data science could flourish 
and flex its muscles in a way that was previously 
impossible.

We are now able to use unstructured data to 
identify untold relationships among elements in 
the data, allowing the use of dynamic data and 

data with multiple contexts that, when approached 
and analyzed in nontraditional ways, provide 
actionable insights into human behavior. Neural 
networks became more sophisticated as the com-
puting power allowed functional real-time out-
put to data queries. Transformers (i.e., deep-
learning models that differentially weigh the 
importance of each part of the input data) made 
natural-language processing possible. With this 
approach, the complexities of the underlying 
computer models, and the corpus of data from 
which those models could draw, grew and be-
came more powerful. The goal of a computer that 
could emulate certain aspects of human interac-
tion went from an impossible dream to a reality.

The connectedness allowed by data science is 
driving a new kind of discovery. People are using 
social networks to draw their own connections 
between friends, things, events, likes, dislikes, 
places, ideas, and emotions. Governments are 
analyzing social networks to stop terrorist acts. 
Businesses are mining social and transactional 
information for connections that will help them 
discover new opportunities. Scientists are build-
ing massive grids of connected data to tease out 
new findings, using AI and machine learning. 
As addressed in more detail below, these advances 
have allowed the emergence of computers that 
can help you perform tasks that previously had 
been tedious. The Star Wars character C-3PO 
was a crude version of the AI-based virtual as-
sistants (e.g., Apple’s Siri, Google’s Assistant, and 
Amazon’s Alexa) that have become part of our 
daily life and can help us perform defined tasks. 
Anyone who has used one of these devices has 
experienced their convenience (e.g., instructing 
the virtual assistant to “set the oven timer for 20 
minutes” so that food is properly cooked) but 
also the annoyance of having the assistant break 
into a conversation with some unrelated facts. 
AI and machine learning constitute the driving 
force behind these devices.

A I a nd M achine Le a r ning  
in Medicine

In the 1990s and into the early 2000s, even with 
slow computers and limited memory, the problem 
of having machines successfully perform certain 
medical tasks that were repetitive, and therefore 
prone to human error, was being solved. Through 
a substantial investment of money and intellec-

https://ai.nejm.org/
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tual effort, computer reading of electrocardio-
grams (ECGs) and white-cell differential counts, 
analysis of retinal photographs and cutaneous 
lesions, and other image-processing tasks has 
become a reality. Many of these machine-learn-
ing–aided tasks have been largely accepted and 
incorporated into the everyday practice of medi-
cine. The performance of these machine tasks is 
not perfect and often requires a skilled person to 
oversee the process, but in many cases, it is good 
enough, given the need for relatively rapid interpre-
tation of images and the lack of local expertise.

However, the use of AI and machine learning 
in medicine has expanded beyond the reading of 
medical images. AI and machine-learning pro-
grams have entered medicine in many ways, in-
cluding, but not limited to, helping to identify 
outbreaks of infectious diseases that may have an 
impact on public health; combining clinical, 
genetic, and many other laboratory outputs to 
identify rare and common conditions that might 
otherwise have escaped detection; and aiding in 
hospital business operations (Fig. 2). In the months 
to come, the Journal will publish other review 
articles that take a selective look at AI and ma-
chine learning in medicine in 2023. But before 
the first article appears, in about a month’s time, 
it is important to consider the overriding issues 
that need to be considered as we learn to work 
hand in hand with machines.

Unr esolv ed Issues in A I  a nd 
M achine Le a r ning in Medicine

Establishing Norms

As noted above, the use of AI and machine 
learning has already become accepted medical 
practice in the interpretation of some types of 
medical images, such as ECGs, plain radiographs, 
computed tomographic (CT) and magnetic reso-
nance imaging (MRI) scans, skin images, and 
retinal photographs. For these applications, AI 
and machine learning have been shown to help 
the health care provider by flagging aspects of 
images that deviate from the norm.

This suggests a key question: what is the 
norm? This simple question shows one of the 
weaknesses of the use of AI and machine learning 
in medicine as it is largely applied today. How 
does bias in the way AI and machine-learning 

algorithms were “taught” influence how they 
function when applied in the real world? How do 
we interject human values into AI and machine-
learning algorithms so that the results obtained 
reflect the real problems faced by health profes-
sionals? What issues must regulators address to 
ensure that AI and machine-learning applications 
perform as advertised in multiple-use settings? 
How should classic approaches in statistical in-
ference be modified, if at all, for interventions 
that rely on AI and machine learning? These are 
but a few of the problems that confront us; the 
“AI in Medicine” series will address some of 
these matters.

Role of AI and Machine Learning  
in Clinical Practice

Pitfalls aside, there is much promise. If AI and 
machine-learning algorithms can be reduced to 
clinically useful “apps,” will they be able to weed 
their way through mountains of clinical, ge-
nomic, metabolomic, and environmental data to 
aid in precision diagnosis? Can AI and machine-
learning–driven apps become your personal scribe 
and free up your time spent on documentation 
so that you can spend more time with patients? 
Can the apps prompt you to ask a key question 
that could help in the differential diagnosis? Can 
they outwit the AI and machine-learning algo-
rithms, used by insurance companies, that make 
it difficult for you to order a positron-emission 
tomographic–CT scan or collect reimbursement 
for the time you spent with a patient and the 
patient’s family? In each area, progress has been 
made. Is it good enough?

Clinical Research on AI and Machine-
Learning Applications

The evaluation of progress has its own set of 
problems. In traditional clinical research, when 
progress takes the form of a new drug for a de-
finable condition, the standards for testing and 
accepting the drug as an advance are well estab-
lished. When the intervention is an AI and ma-
chine-learning algorithm rather than a drug, the 
medical community expects the same level of 
surety, but the standards for describing and test-
ing AI and machine-learning interventions are 
far from clear.

What are the standards to which AI and 

https://ai.nejm.org/
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Figure 2. Spectrum of Artificial Intelligence (AI) in Medicine.

Panel A shows selected areas of public health and medicine in which AI has an established but evolving role. These tools are already 
helping medical professionals do their jobs as partners in practice. EMR denotes electronic medical record. Panel B shows areas of 
medical practice in which AI has begun to have an influence but has not yet reached the stage of common use.
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machine learning–based interventional research 
should be held, if an app is going to be accepted 
as the standard that will shape, reform, and im-
prove clinical practice? That research has three 
components. First, the research must be struc-
tured to answer a clinically meaningful question 
in a way that can influence the behavior of the 
health professional and lead to an improvement 
in outcomes for a patient. Second, the interven-
tion must be definable, scalable, and applicable 
to the problem at hand. It must not be influenced 
by factors outside the domain of the problem 
and must yield outcomes that can be applied to 
similar clinical problems across a wide range of 
populations and disease prevalences. Can AI and 
machine learning–driven care meet these stan-
dards — ones that we demand from a novel thera-
peutic intervention or laboratory-based diagnos-
tic test — or do we need to have a unique set of 
standards for this type of intervention? Third, 
when the results of the research are applied in 
such a way as to influence practice, the outcome 
must be beneficial for all patients under consid-
eration, not just those who are similar to the 
ones with characteristics and findings on which 
the algorithm was trained. This raises the ques-
tion of whether such algorithms should include 
consideration of public health (i.e., the use of 
scarce resources) when diagnostic or treatment 
recommendations are being made and the extent 
to which such considerations are part of the deci-
sion-making process of the algorithm. Such ethi-
cal considerations have engaged health profes-
sionals and the public for centuries.8

Use of AI and Machine-Learning Applications 
in Conducting Clinical Research

AI and machine learning have the potential to 
improve and possibly simplify and speed up clini-
cal trials through both more efficient recruitment 
and matching of study participants and more 
comprehensive analyses of the data. In addition, it 
may be possible to create synthetic control groups 
by matching historical data to target trial enroll-
ment criteria. AI and machine learning may also 
be used to better predict and understand possi-
ble adverse events and patient subpopulations. It 
seems possible that AI could generate “synthetic 
patients” in order to simulate diagnostic or thera-
peutic outcomes. But the use of AI and machine-
learning applications and interventions introduc-

es a set of uncertainties that must be dealt with 
both in protocols and in reporting of clinical 
trials.9,10

In this AI in Medicine series, we plan to cover 
progress, pitfalls, promise, and promulgation at 
the interface of AI and medicine. It is important 
to understand that this is a fast-moving field, 
so to some extent, what we publish may have the 
resolution of a snapshot of the landscape taken 
from a bullet train. Specifically, things happening 
in close temporal proximity to publication may be 
blurred because they are changing quickly, but 
the distant background will be in reasonably 
good focus. One area of substantial progress in 
AI and machine learning (i.e., in the foreground, 
in our snapshot analogy) is the appearance of 
sophisticated chatbots that are available for use 
by the general public. Although chatbots have only 
recently been introduced at a level of sophistica-
tion that could have an impact on daily medical 
practice, we believe that their potential to influ-
ence how medicine is practiced is substantial and 
that we would be remiss not to address that 
potential as well as possible problems related to 
their use.

Ch atbo t s in Medicine

In this issue of the Journal, an article by Lee et 
al.11 introduces the GPT-4 chatbot and its medi-
cal applications. The article was written by a team 
of researchers who work for the entities that cre-
ated GPT-4, a chatbot with a broad education that 
includes medical knowledge. Before we see the 
future, a quick look at the past will be helpful. 
A chatbot is a computer program that uses AI 
and natural-language processing to understand 
questions and automate responses to them, simu-
lating human conversation. A very early medical 
chatbot, ELIZA, was developed between 1964 and 
1966 by Joseph Weizenbaum at the Artificial In-
telligence Laboratory of the Massachusetts Insti-
tute of Technology (Fig. 3).

Chatbot technology is now almost every-
where, from customer service to personal virtual 
assistants, as noted above. With the powerful 
computers available today, language models 
have hundreds of billions of parameters, which 
can be used to generate new text. This ability, 
combined with an almost infinite amount of 
available (Internet) data with which to train the 
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Figure 3. Chatbots in Medicine.

Panel A shows a screen shot of output from a very early medical chatbot called ELIZA, which was developed by  
Joseph Weizenbaum at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology between 
1964 and 1966. Panel B (courtesy of Lee et al.11) shows input and output from the GPT-4, a chatbot that is expected 
to be introduced in 2023. BMI denotes body-mass index.

A

B

Question: 
A 12-year-old girl is brought to the emergency department by her mother because of a 1-week history 
of worsening leg swelling. The patient also noticed blood in her urine yesterday. The bleeding has not 
recurred. She had an upper respiratory tract infection and sore throat 1 week ago that caused her to 
miss several days of school. Medical history is otherwise unremarkable, and she takes no routine 
medications. Menarche has not yet occurred. BMI is 20 kg/m2. Vital signs are temperature 37.0°C 
(98.6°F), pulse 78 beats/min, respiratory rate 12 breaths/min, and blood pressure 136/84 mm Hg. Pulse 
oximetry while the patient is breathing ambient air shows an oxygen saturation of 100%. Physical 
examination shows erythema of the posterior pharynx, mild cervical lymphadenopathy, and 3+ 
pitting edema in both knees. Results of urinalysis are shown:
     Protein    150 mg/dl
     Blood    Positive
     Leukocyte esterase   Positive
     Nitrite    Negative
     White cells    5−10/high-power �eld
     Red cells    10−25/high-power �eld
                        Casts  1−2/low-power �eld
Results of which of the following laboratory studies are most likely to be abnormal in this patient? 
(A) Bleeding time
(B) Erythrocyte count
(C) Serum concentration of C3
(D) Serum IgA concentration
(E) Serum rheumatoid factor assay

The correct answer is (C) Serum concentration of C3. This patient has signs and symptoms of acute 
poststreptococcal glomerulonephritis (APSGN), a type of glomerular disease that typically occurs 1 to 
3 weeks after a streptococcal infection of the skin or pharynx. APSGN is mediated by immune 
complexes that deposit in the glomerular basement membrane and activate the complement 
pathway, leading to in�ammation, hematuria, proteinuria, and reduced glomerular �ltration rate. The 
resulting �uid retention causes hypertension and edema. The serum C3 level is usually low in APSGN, 
re�ecting complement consumption. The other laboratory studies listed are normal or not relevant in 
APSGN. Bleeding time is a measure of platelet function, which is not a�ected by APSGN. Erythrocyte 
count may be slightly elevated due to hemoconcentration, but not signi�cantly. Serum IgA 
concentration is elevated in IgA nephropathy, another type of glomerular disease that can cause 
hematuria and proteinuria, but it is not associated with streptococcal infection or low C3 level. Serum 
rheumatoid factor assay is used to diagnose rheumatoid arthritis, an autoimmune disorder that does 
not cause APSGN.
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network, means that language models can do 
more and more, as shown by the Chat Generative 
Pre-trained Transformer, or ChatGPT.

ChatGPT is a language model trained by 
OpenAI. It was introduced publicly in November 
2022 (https://openai . com/  blog/  chatgpt) and has 
demonstrated a new way in which AI-driven ma-
chines can interact with people. The new-gener-
ation chatbots hold the promise of being a scribe 
and coach, but with some key caveats. Many of 
these caveats were described by the developers of 
ChatGPT at its launch but warrant special con-
sideration when used in medicine, as detailed by 
Lee et al.11 In their current iteration, the new gen-
eration of chatbots can help with the medical 
documentation problem and answer key questions 
that could help in the differential diagnosis, as 
noted above. But it is difficult to know whether 
the answers provided are grounded in appropri-
ate fact. The onus would be on clinicians to proof-
read the work of the chatbot, just as clinicians 
need to proofread clinical notes that they dictate. 
The difficulty is that such proofreading may be 
beyond the expertise of the user. Proofreading a 
note on a patient visit is likely to be well within 
the range of the provider’s expertise, but if the 
chatbot is asked a question as a “curbside con-
sult,” the veracity of the answer may be much 
harder to determine.

The application of greatest potential and con-
cern is the use of chatbots to make diagnoses or 
recommend treatment. A user without clinical 
experience could have trouble differentiating fact 
from fiction. Both these issues are addressed in 
the article by Lee and colleagues,11 who point out 
the strengths and weaknesses of using chatbots 

in medicine. Since the authors have created one 
such entity, bias is likely.

Nevertheless, we think that chatbots will 
become important tools in the practice of medi-
cine. Like any good tool, they can help us do 
our job better, but if not used properly, they 
have the potential to do damage. Since the tools 
are new and hard to test with the use of the 
traditional methods noted above, the medical 
community will be learning how to use them, 
but learn we must. There is no question that the 
chatbots will also learn from their users. Thus, 
we anticipate a period of adaptation by both the 
user and the tool.

Conclusions

We firmly believe that the introduction of AI and 
machine learning in medicine has helped health 
professionals improve the quality of care that 
they can deliver and has the promise to improve 
it even more in the near future and beyond. Just 
as computer acquisition of radiographic images 
did away with the x-ray file room and lost images, 
AI and machine learning can transform medi-
cine. Health professionals will figure out how to 
work with AI and machine learning as we grow 
along with the technology. AI and machine learn-
ing will not put health professionals out of busi-
ness; rather, they will make it possible for health 
professionals to do their jobs better and leave 
time for the human–human interactions that 
make medicine the rewarding profession we all 
value.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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The interpretation of medical images — a task that lies at the 
heart of the radiologist’s work — has involved the growing adoption of 
artificial intelligence (AI) applications in recent years. This article reviews 

progress, challenges, and opportunities in the development of radiologic AI models 
and their adoption in clinical practice. We discuss the functions that AI-based 
algorithms serve in assisting radiologists, including detection, workflow triage, 
and quantification, as well as the emerging trend of the use of medical-imaging 
AI by clinicians who are not radiologists. We identify the central challenge of 
generalization in the use of AI algorithms in radiology and the need for validation 
safeguards that encompass clinician–AI collaboration, transparency, and post-
deployment monitoring. Finally, we discuss the rapid progress in developing multi-
modal large language models in AI; this progress represents a major opportunity 
for the development of generalist medical AI models that can tackle the full spec-
trum of image-interpretation tasks and more. To aid readers who are unfamiliar 
with terms or ideas used for AI in general or AI in image interpretation, a Glos-
sary is included with this article.

In recent years, AI models have been shown to be remarkably successful in 
interpretation of medical images.1 Their use has been extended to various medical-
imaging applications, including, but not limited to, the diagnosis of dermatologic 
conditions2 and the interpretation of electrocardiograms,3 pathological slides,4 and 
ophthalmic images.5 Among these applications, the use of AI in radiology has 
shown great promise in detecting and classifying abnormalities on plain radio-
graphs,6 computed tomographic (CT) scans,7 and magnetic resonance imaging 
(MRI) scans,8 leading to more accurate diagnoses and improved treatment decisions.

Even though the Food and Drug Administration (FDA) has approved more than 
200 commercial radiology AI products, substantial obstacles must be overcome 
before we are likely to see widespread successful clinical use of these products. 
The incorporation of AI in radiology poses both potential benefits and challenges 
for the medical and AI communities. We expect that the eventual resolution of 
these issues and more comprehensive solutions, including the development of new 
foundation models, will lead to broader adoption of AI within this health care 
sector.

A I Use in R a diol o gy

Radiology as a specialty is well positioned for the application and adoption of AI 
because of several key factors. First, AI excels in analyzing images,9 and unlike 
other specialties that use imaging, radiology has an established digital workflow 
and universal standards for image storage, so that it is easier to integrate AI.10 
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Furthermore, AI fits naturally in the workflow 
of image interpretation and can replicate well-
defined interpretive tasks effectively.11

AI Use for Radiologists

AI can be used in the field of radiology to ana-
lyze images from a wide range of techniques, 
including radiography, CT, ultrasonography, and 
MRI. Radiologic AI algorithms serve a number 
of narrow image-analysis functions to assist radi-
ologists, such as quantification, workflow triage, 
and image enhancement (Fig. 1).1,12-17 Quantifica-
tion algorithms perform segmentation and mea-
surements of anatomical structures or abnor-
malities. Common examples include measuring 
breast density, identifying anatomical structures 
in the brain, quantitating cardiac flow,18 and as-
sessing local lung-tissue density. Workflow triage 
involves flagging and communicating suspected 
positive findings, including, but not limited to, 
intracranial hemorrhage, intracranial large-vessel 
occlusion,19 pneumothorax,20 and pulmonary em-
bolism. AI is also used for the detection, local-
ization, and classification of conditions such as 

pulmonary nodules and breast abnormalities. In 
addition, AI algorithms enhance preinterpretive 
processes, including image reconstruction, image 
acquisition, and mitigation of image noise.17

There is promise in exploring radiologic AI 
models that can expand interpretive capabilities 
beyond those of human experts. For instance, AI 
algorithms can accurately predict clinical out-
comes on the basis of CT data in cases of trau-
matic brain injury21 and cancer.22 In addition, AI-
derived imaging biomarkers can help to quickly 
and objectively assess structures and pathologi-
cal processes related to body composition, such 
as bone mineral density, visceral fat, and liver fat, 
which can be used to screen for various health 
conditions.23 When applied to routine CT imag-
ing, these AI-derived biomarkers are proving 
useful in predicting future adverse events.24 
Moreover, recent research has shown that coro-
nary-artery calcium scores, which are typically 
obtained on the basis of CT scanning, can be de-
termined by means of cardiac ultrasonography.25 
These findings point to the value of radiologic 
AI models for patients (e.g., no radiation exposure).

Glossary

Continual learning: A process in which an AI model learns from new data over time while retaining previously acquired 
knowledge.

Data set shift: The shift from data used to train a machine‑learning model to data encountered in the real world. This 
shift can cause the model to perform poorly when used in the real world, even if it performed well during training.

Federated learning: A distributed machine‑learning approach that enables multiple devices or nodes to collaboratively 
train a shared model while keeping their individual data local, thereby preserving privacy and reducing data commu‑
nication overhead.

Foundation models: AI models that serve as a starting point for developing more specific AI models. Foundation mod‑
els are trained on large amounts of data and can be fine‑tuned for specific applications, such as detecting lesions or 
segmenting anatomical structures.

Generalist medical AI models: A class of advanced medical foundation models that can be used across various medical 
applications, replacing task‑specific models. Generalist medical AI models have three key capabilities that distinguish 
them from conventional medical AI models. They can adapt to new tasks described in plain language, without re‑
quiring retraining; they can accept inputs and produce outputs using various combinations of data types; and they 
are capable of logically analyzing unfamiliar medical content.

Large language models: AI models consisting of a neural network with billions of weights or more, trained on large amounts 
of unlabeled data. These models have the ability to understand and produce human language and may also apply to 
images and audio.

Multimodal models: AI models that can understand and combine different types of medical data, such as medical im‑
ages and electronic health records. Multimodal models are particularly useful in medicine for tasks that require a 
comprehensive understanding of the patient, such as diagnosis and individualized treatment planning.

Self-supervised models: AI models that can learn from medical data without the need for explicit annotations. These 
models can be used to learn representations of medical data that are useful for a wide range of tasks, such as di‑
agnosis and patient monitoring. Self‑supervised models are particularly useful in medicine when labeled data are 
scarce or expensive to obtain.

Zero-shot learning: The capability of an AI model to perform a task or solve a problem for which it has not been explicitly 
trained, without the need for any additional training data. In medicine, this can be particularly useful when there is a 
shortage of labeled data available for a specific medical task.
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Radiologic AI has attracted global interest, 
and commercial AI algorithms have been devel-
oped by companies based in more than 20 coun-
tries. Studies have shown that some hospitals, as 
well as other point-of-care centers, already use 
AI products successfully, and larger practices are 
more likely than smaller practices to use AI cur-
rently. Radiologists who use AI in their practices 
are generally satisfied with their experience and 
find that AI provides value to them and their 

patients. However, radiologists have expressed 
concerns about lack of knowledge, lack of trust, 
and changes in professional identity and auton-
omy.26 Local champions of AI, education, train-
ing, and support can help overcome these con-
cerns. The majority of radiologists and residents 
expect substantial changes in the radiology pro-
fession within the next decade and believe that 
AI should have a role as a “co-pilot,” acting as a 
second reader and improving workflow tasks.27 

Figure 1. Current Uses of Artificial Intelligence (AI) in Radiology.

Shown are common clinical AI solutions for the functions of triage, detection, and diagnosis with CADt (computer‑aided detection for 
triage), CADe (computer‑aided detection for characterizing abnormalities), and CADx (computer‑aided detection for diagnosis). Other 
AI applications for radiology include image reconstruction and noise reduction. Applications for nonimaging tasks are not shown. CT 
denotes computed tomography.
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Although the penetration of AI in the U.S. mar-
ket is currently estimated to be only 2%, the 
readiness of radiologists and the potential of the 
technology indicate that further translation into 
clinical practice is likely to occur.

Emerging Uses for Nonradiologists

Although many current radiologic AI applica-
tions are designed for radiologists, there is a 
small but emerging trend globally toward the 
use of medical-imaging AI for nonradiologist 
clinicians and other stakeholders (i.e., health care 
providers and patients). This trend presents an 
opportunity for improving access to medical 
imaging and reducing common diagnostic er-
rors28 in low-resource settings and emergency 
departments, where there is often a lack of 
around-the-clock radiology coverage.29 For in-
stance, one study showed that an AI system for 
chest radiograph interpretation, when combined 
with input from a nonradiology resident, had 
performance values that were similar to those 
for board-certified radiologists.30 A popular AI 
application that is targeted for use by nonradi-
ologist clinicians for detecting large-vessel oc-
clusions in the central nervous system has re-
sulted in a significant reduction in time to 
intervention and improved patient outcomes.31 
Moreover, AI has been shown to accelerate 
medical-imaging acquisition outside traditional 
referral workflows with new, clinician-focused 
mobile applications for notifications of AI re-
sults.32 This trend, although not well estab-
lished, has been cited as a potential long-term 
threat to radiology as a specialty because ad-
vanced AI models may reduce the complexity of 
technical interpretation so that a nonradiologist 
clinician could use imaging without relying on a 
radiologist.33,34

Portable and inexpensive imaging techniques 
are frequently supported by AI and have served 
to lower the barrier for more widespread clinical 
use of AI in medical imaging outside the tradi-
tional radiology workflow.35,36 For example, the 
Swoop portable MRI system, a point-of-care de-
vice that addresses existing limitations in forms 
of imaging technology, provides accessibility 
and maneuverability for a range of clinical ap-
plications. The system plugs into a standard 
electrical outlet and is controlled by an Apple 
iPad. Portable ultrasound probes and smart-

phones in AI-enabled applications can be used 
to obtain diagnostic information even by users 
without formal training in echocardiography or 
the use of ultrasound in obstetrical care.37 Over-
all, although the use of medical-imaging AI by 
nonradiologist clinicians is still in the early 
stages, it has the potential to revolutionize ac-
cess to medical imaging and improve patient 
outcomes.

S a fegua r ds for Effec ti v e 
Gener a liz ation

In considering the widespread adoption of AI 
algorithms in radiology, a critical question aris-
es: Will they work for all patients? The models 
underlying specific AI applications are often not 
tested outside the setting in which they were 
trained, and even AI systems that receive FDA 
approval are rarely tested prospectively or in 
multiple clinical settings.38 Very few random-
ized, controlled trials have shown the safety and 
effectiveness of existing AI algorithms in radiol-
ogy, and the lack of real-world evaluation of AI 
systems can pose a substantial risk to patients 
and clinicians.39

Moreover, studies have shown that the per-
formance of many radiologic AI models worsens 
when they are applied to patients who differ 
from those used for model development, a phe-
nomenon known as “data set shift.”40-44 In inter-
pretation of medical images, data set shift can 
occur as a result of various factors, such as dif-
ferences in health care systems, patient popula-
tions, and clinical practices.45 For instance, the 
performance of models for brain tumor segmen-
tation and chest radiograph interpretation wors-
ens when the models are validated on external 
data collected at hospitals other than those used 
for model training.46,47 In another example, a ret-
rospective study showed that the performance of 
a commercial AI model in detecting cervical spine 
fractures was worse in real-world practice than 
the performance initially reported to the FDA.48 
Patient age, fracture characteristics, and degen-
erative changes in the spine affected the sensi-
tivity and false positive rates to an extent that 
limited the clinical usefulness of the AI model 
and aroused concerns about the generalization 
of radiologic AI algorithms across clinical envi-
ronments.
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There is a pressing need for the development 
of methods that improve the generalization of 
algorithms in new settings.49-51 As the field ma-
tures, better generalization checks based on ac-
cepted standards must be established before the 
algorithms are widely applied. These checks en-
compass three related areas: clinician–AI collabo-
ration, transparency, and monitoring (Fig. 2).

Clinician–AI Collaboration

The successful use of AI in radiology depends on 
effective clinician–AI collaboration. In theory, 
the use of AI algorithms to assist radiologists 
allows for a human–AI collaboration workflow, 
with humans and AI leveraging complementary 
strengths.52 Studies have shown that AI assis-
tance in interpretation of medical images is more 
useful to some clinicians than to others and 
generally provides more benefit to less experi-
enced clinicians.53,54

Despite some evidence that clinicians receiv-
ing AI assistance can achieve better performance 
than unassisted clinicians,53,55,56 the body of re-
search on human–AI collaboration for image 
interpretation offers mixed evidence regarding 
the value of such a collaboration. Results vary 
according to particular metrics, tasks, and the 
study cohorts in question, with studies showing 
that although AI can improve the performance 
of radiologists, sometimes AI alone performs 
better than a radiologist using AI.57,58

Many AI methods are “black boxes,” meaning 
that their decision-making processes are not 
easily interpretable by humans; this can pose 
challenges for clinicians trying to understand 
and trust the recommendations of AI.59 Studies 
of the potential for explainable AI methods to 
build trust in clinicians have shown mixed re-
sults.59,60 Therefore, there is a need to move from 
evaluations centered on the stand-alone perfor-
mance of models to evaluations centered on the 
outcomes when these algorithms are used as 
assistive tools in real-world clinical workflows. 
This approach will enable us to better under-
stand the effectiveness and limitations of AI in 
clinical practice and establish safeguards for 
effective clinician–AI collaboration.

Transparency

Transparency is a major challenge in evaluating 
the generalization behavior of AI algorithms in 

medical imaging. Scientific, peer-reviewed evi-
dence of efficacy is lacking for most commer-
cially available AI products.38 Many published 
reports on FDA-cleared devices omit informa-
tion on sample size, demographic characteristics 
of patients, and specifications of the equipment 
used to acquire the images to be interpreted. In 
addition, only a fraction of device studies offer 
data on the specific demographic subgroups 
used during algorithm training, as well as the 
diagnostic performance of these algorithms 
when applied to patients from underrepresented 
demographic subgroups. This lack of informa-
tion makes it difficult to determine the general-
izability of AI and machine-learning algorithms 
across different patient populations.

Figure 2. Generalization Checks for AI Systems in Radiology.

The three essential components of generalization checks for radiologic AI 
systems are clinician–AI collaboration, transparency, and postdeployment 
monitoring. Clinician–AI collaboration reflects the need to move from eval‑
uations of the stand‑alone performance of AI models to evaluations of 
their value as assistive tools in real‑world clinical workflows. Transparency 
with regard to lack of information about an AI model requires greater rigor 
through the use of checklists and public release of medical‑imaging data 
sets. Postdeployment monitoring involves mechanisms to incorporate 
feedback from clinicians and continual learning strategies for regular up‑
dating of the models.
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The limited independent validation of these 
models has generated a call for greater transpar-
ency and rigor with the use of checklists to ver-
ify the proper implementation of AI models in 
medical imaging and to ensure adequate repro-
ducibility and clinical effectiveness.61-63 One solu-
tion for transparency is the curation and public 
release of medical-imaging data sets to serve as 
a common benchmark and show algorithm per-
formance.64-67 The availability of publicly re-
leased chest radiograph data sets has already 
provided support for marked advances in im-
proving AI validation.68,69 However, there are 
challenges in curating public medical-imaging 
data sets, including privacy concerns about shar-
ing data,70 costs of data infrastructure,71 and over-
representation of data from academic medical 
centers with substantial resources.72 Federated 
learning, another approach to data sharing, in-
volves training an AI model on decentralized 
data sources without transferring the data to a 
central repository.73,74 Streamlined processes for 
curating and sharing diverse medical data sets 
are necessary for transparency in establishing 
clinical usefulness.

Postdeployment Monitoring

Even after a model is deployed, its performance 
in the real world may degrade over time. In inter-
pretation of medical images, these shifts can 
occur as a result of various factors such as 
changes in disease prevalence, advances in med-
ical technology, and alterations in clinical prac-
tices.38,75-77 Failure to update the model to reflect 
these changes can lead to poor model perfor-
mance and misuse. However, regulatory require-
ments may restrict updating of models after they 
have been approved.

Continuous monitoring of model performance 
and proactive measures to address data set shifts 
over time can improve the accuracy and reliabil-
ity of AI models in medical-imaging interpreta-
tion. Regular updates of the training data and 
retraining of the model on new data through 
continual learning can help maintain model per-
formance over time.78 In addition, incorporating 
feedback from clinicians can help improve the 
performance of the model by providing real-
world insights and identifying areas for im-
provement. Ultimately, postdeployment monitor-
ing is essential to ensure that AI models remain 
effective and reliable in clinical settings.79,80

Gener a lis t Medic a l A I  Model s 
for R a diol o gy

The current generation of AI models in radiol-
ogy can handle only a limited set of interpreta-
tion tasks, and they rely heavily on curated data 
that have been specifically labeled and catego-
rized.81 Although focusing on the image as an 
isolated model input has some value, it does 
not reflect the true cognitive work of radiology, 
which involves interpreting medical-imaging 
examinations comprehensively, comparing cur-
rent and previous examinations,82 and synthe-
sizing this information with clinical contextual 
data to make diagnostic and management rec-
ommendations.83,84 The narrow focus of exist-
ing AI solutions on interpretation of individual 
images in isolation has contributed to the limit-
ed penetration of radiologic AI applications in 
practice.

However, there is a trend toward a more com-
prehensive approach to the development of ra-
diologic AI, with the aim of providing more 
value than simply automating individual inter-
pretation tasks. Recently developed models can 
identify dozens or even hundreds of findings on 
chest radiographs and brain CT scans obtained 
without contrast material,85 and they can provide 
radiologists with specific details about each 
finding. More and more companies are offering 
AI solutions that address the entire diagnostic 
and clinical workf low for conditions such as 
stroke and cancer, from screening to direct 
clinical referrals and follow-up. Although these 
comprehensive AI solutions may make it easier 
for medical professionals to implement and use 
the technology, the issues of validation and trans-
parency remain a concern.

A new generation of generalist medical AI 
models with the potential to tackle the entire 
task of radiologic image interpretation and more 
is on the horizon.86 These models will be capa-
ble of accurately generating the full radiologic 
report by interpreting a wide range of findings 
with degrees of uncertainty and specificity based 
on the image, by fusing the clinical context with 
the imaging data, and by leveraging previous 
imaging in the decision of the model.84,87-91 This 
comprehensive approach is more closely aligned 
with the overall cognitive work in radiology. 
Early studies of such models have shown that 
they can detect several diseases on images at an 
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expert level without requiring further annotation, 
a capability known as zero-shot learning.92

Rapid developments in AI models, including 
self-supervised models,92,93 multimodal models,82 
foundation models, and particularly large lan-
guage models for text data and for combined 
image and text data,94,95 have the potential to 
accelerate progress in this area. Large language 
models are AI models consisting of a neural net-
work with billions of weights or more, trained 
on large amounts of unlabeled data. Early studies 
of large language models for text-based tasks in 
medicine have included chatbots such as GPT-4 
(Generative Pre-trained Transformer 4) and have 
shown that these models are capable of clinical 
expert–level medical note-taking, question an-
swering, and consultation.96,97 We anticipate that 
future AI models will be able to process imaging 
data, speech, and medical text and generate out-
puts such as free-text explanations, spoken rec-
ommendations, and image annotations that re-
flect advanced medical reasoning. These models 
will be able to generate tailored text outputs 
based on medical-image inputs, catering to the 

specific needs of various end users, and will en-
able personalized recommendations and natural-
language interactions on the imaging study. For 
instance, given a medical image and relevant 
clinical information, the model will produce a 
complete radiologic report for the radiologist,98 
a patient-friendly report with easy-to-understand 
descriptions in the preferred language for the 
patient, recommendations regarding a surgical 
approach that are based on best practices for the 
surgeon, and evidence-based follow-up sugges-
tions and tests for the primary care provider — 
all derived from the imaging and clinical data by 
a single generalist model (Fig. 3). In addition, 
these models may be able to generalize easily to 
new geographic locations, patient populations, 
disease distributions, and changes in imaging 
technology without requiring substantial engineer-
ing effort or more than a handful of new data.99

Given the capabilities of large language mod-
els, training new multimodal large language 
models with large quantities of real-world medi-
cal imaging and clinical text data, although 
challenging, holds promise in ushering in trans-

Figure 3. Potential of Generalist Medical AI Models in Radiology.

Generalist medical AI models have great potential for transforming radiology. These models can produce complete 
radiologic reports containing interpretive and descriptive findings derived from various sources such as imaging, 
clinical context, and previous imaging. They could also potentially link specific image regions with language descrip‑
tions, adjust to end users, and generate findings within an interpretive context. In addition, these models may pos‑
sess the ability to adapt to new environments and technological advancements. “Omics” data are derived from studies 
such as genomics, epigenomics, proteomics, and metabolomics.
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formative capabilities of radiologic AI. However, 
the extent to which such models can exacerbate 
the extant problems with widespread validation 
remains unknown and is an important area for 
study and concern. Overall, the potential for 
generalist medical AI models to provide compre-
hensive solutions to the task of interpretation of 
radiologic images and beyond is likely to trans-
form not only the field of radiology but also 
health care more broadly.

Conclusions

AI is a prime instance of a technological break-
through that has widespread current and future 
possibilities in the field of medical imaging. 

Radiology has witnessed the adoption of these 
tools in everyday clinical practice, albeit with a 
modest impact thus far. The discrepancy be-
tween the anticipated and actual impact can be 
attributed to various factors, such as the absence 
of data from prospective real-world studies, lim-
ited generalizability, and the scarcity of compre-
hensive AI solutions for image interpretation. As 
health care professionals increasingly use radio-
logic AI and as large language models continue 
to evolve, the future of AI in medical imaging 
appears bright. However, it remains uncertain 
whether the traditional practice of radiology, in its 
current form, will share this promising outlook.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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Florence Nightingale’s innovative “rose diagram” of preventable 
deaths revolutionized data-driven disease surveillance.1 Raw hospital mortality 
data collected during the Crimean War were transformed into a compelling, 

visual insight — poor sanitary conditions killed more people than battle wounds 
did. This act of synthesizing noisy, complex data into an elegant, effective message 
was the foundation for a royal commission to track morbidity and mortality and 
thus launched a new era in which analytic methods were used to better monitor 
and manage infectious disease. In the more than 160 years since the first publica-
tion of Nightingale’s rose diagram, tools and technology for translating high-
density data and uncovering hidden patterns to provide public health solutions 
have continued to evolve. Manual techniques are now complemented by machine-
learning algorithms. Artificial intelligence (AI) tools can now identify intricate, 
previously invisible data structures, providing innovative solutions to old problems. 
Together, these advances are propelling infectious-disease surveillance forward.

The coronavirus disease 2019 (Covid-19) pandemic has highlighted the speed 
with which infections can spread and devastate the world — and the extreme 
importance of an equally nimble, expeditious, and clever armamentarium of pub-
lic health tools to counter those effects. Throughout this crisis, we have witnessed 
a multitude of AI solutions deployed to play this role — some much more success-
ful than others. As new pathogens emerge or old challenges return to command 
our attention, the incorporation of the lessons learned into our public health play-
book is a priority. In this review article, we reflect on the effects of new and long-
standing AI solutions for infectious-disease surveillance. AI applications have been 
shown to be successful for a diverse set of functions, including early-warning 
systems,2,3 hotspot detection,4,5 epidemiologic tracking and forecasting,6,7 and resource 
allocation8 (Fig. 1). We discuss a few recent examples.9,11,12 We begin with how AI 
and machine learning can power early-warning tools and help distinguish among 
various circulating pathogens (e.g., severe acute respiratory syndrome coronavirus 
2 [SARS-CoV-2] vs. influenza virus). We then discuss AI and machine-learning 
tools that can backtrack epidemics to their source and an algorithmic method that 
can direct an efficient response to an ongoing epidemic. Finally, we emphasize the 
critical limitations of AI and machine learning for public health surveillance and 
discuss salient considerations to improve implementation in the future.

A I A pplic ations in Dise a se Surv eill a nce

Early Warning

Early-warning systems for disease surveillance have benefitted immensely from 
the incorporation of AI algorithms and analytics.14-16 At any given moment, the 
Web is flooded with disease reports in the form of news articles, press releases, 
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professional discussion boards, and other curated 
fragments of information. These validated com-
munications can range from documentation of 
cases of innocuous infections well known to the 
world to the first reports of emerging viruses 
with pandemic potential. However, the volume 
and distributed nature of these reports consti-
tute much more information than can be made 
sense of promptly by even highly trained per-
sons, making early warning of emerging viruses 
nearly impossible. Enter AI-trained algorithms 
that can parse, filter, classify, and aggregate text 
for signals of infectious-disease events with high 
accuracy at unprecedented speeds. HealthMap, 
just one example of these types of systems, has 
done so successfully for more than a decade.2,17

This Internet-based infectious-disease surveil-
lance system provided early evidence of the 

emergence of influenza A (H1N1) in Mexico18

and was used to track the 2019 outbreak of 
vaping-induced pulmonary disease in the United 
States.19

HealthMap uses natural-language processing 
to search through text posted across the Web for 
signals of infectious-disease events in real time 
by comparing the text with a dictionary of 
known pathogens and geographic areas. Algo-
rithms are trained to ignore noise and parse 
relevant reports by identifying disease-related 
text such as the name of a pathogen and inci-
dence numbers (Fig. 2). HealthMap then sepa-
rates outbreak-related noise from other disease 
reports (e.g., scientific manuscripts and vaccina-
tion campaigns), using a Bayesian machine-
learning classification scheme that was original-
ly trained with data that were manually tagged 

Figure 1. Various Functions of Artificial Intelligence (AI) for Infectious-Disease Surveillance.

Shown is a nonexhaustive list of functions of AI‑aided infectious‑disease surveillance and representative examples 
from the published literature.2‑13 Each example includes the type of AI algorithm, a brief description of its purpose, 
and the associated citation. Covid‑19 denotes coronavirus disease 2019.

!
Early warning

Function Examples

Pathogen classification

Risk assessment

Source identification

Hotspot detection

Tracking and forecasting

• Natural-language processing of news sources to identify outbreaks 
(Freifeld et al., JAMIA 2008)

• Unsupervised machine learning of social media data to detect unknown 
infections (Lim, Tucker, and Kumara, J Biomed Inform 2017) 

• Neural computing engine to correlate sound from hospital waiting rooms with 
influenza spikes (Al Hossain et al., Proc ACM Interact Mob Wearable Ubiquitous 
Technol 2020)

• Multilayer perceptron artificial neural network model to detect spatial clustering 
of tuberculosis (Mollalo et al., Int J Environ Res Public Health 2019) 

• Convolutional neural network model for reading antibiograms (Pascucci et al., 
Nat Commun 2021)

• Convolutional neural network model to automate malaria microscopy and 
diagnosis (Liang et al., IEEE 2016)

• Reinforcement learning of Covid-19 positivity rates to target limited testing 
in Greece (Bastani et al., Nature 2021)

• Machine-learning models including random forest and extreme gradient 
boosting to use syndromic surveillance for Covid-19 risk prediction 
(Dantas, PLoS One 2021)

• Automated data mining of electronic medical records to uncover hidden 
routes of infection transmission (Sundermann et al., Clin Infect Dis 2021)

• Supervised machine learning in combination with digital signal processing 
for genomic tracing of Covid-19 (Randhawa et al., PLoS One 2020)

• Real-time stacking of multiple models to improve forecasts of seasonal 
influenza (Reich et al., PLoS Comput Biol 2019)

• Machine learning to combine new data sources for monitoring Covid-19 
(Liu et al., J Med Internet Res 2020)
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as being relevant. HealthMap also automatically 
extracts geographic information that can be used 
to tie multiple reports together and identify dis-
ease clusters that cross-jurisdictional public 
health authorities may have missed. HealthMap 
uses a continuously expanding dictionary with 
text in more than nine languages. This high-
lights a key advantage of AI for disease surveil-
lance over labor-intensive, continuous manual 
classification — the ability to simultaneously 
provide worldwide coverage and hyperlocal situ-
ational awareness. This dynamic architecture 
enabled the December 30, 2019, HealthMap 
warning of a “cluster of pneumonia cases of 
unknown etiology,” just days after the first case 
of Covid-19 was identified.14,20

 Pathogen Classification

After a potential outbreak has been identified, 
an effective public health response requires 
knowledge of the underlying cause. Similar 
symptom patterns can be manifested by various 
pathogens or even by other, noninfectious 
causes.21 AI has led to advances in diagnostic 
classification in a variety of fields,22 including 
neuroimaging (e.g., improving diagnostic tests 
for Alzheimer’s disease23) and oncology (e.g., 

detecting breast cancer24). Current methods of 
infectious-disease surveillance have similarly 
drawn on AI to differentiate among various 
pathogens or identify variants that have worri-
some characteristics. By defining the pathologic 
characteristics of an outbreak, public health au-
thorities are able to respond accordingly (e.g., by 
ensuring an adequate supply of oseltamivir when 
influenza cases are increasing in a region). Con-
versely, reliance on simple syndromic definitions 
can result in misidentification of an outbreak, 
particularly when pathogens share symptoms and 
routes of transmission. For example, a “Covid-
like illness” syndrome suggested a false wave of 
Covid-19 in Canada, whereas pathogen data in-
stead pointed to circulating seasonal viruses such 
as enterovirus or rhinovirus.21

A recent example of AI applied to determine 
antibiotic resistance highlights the power of an 
AI-driven image classification tool to aid in sur-
veillance. The Kirby–Bauer disk-diffusion test is 
a simple, low-cost technique for determining 
bacterial susceptibility to drugs from the diam-
eter of the area in which growth of the bacteria 
is inhibited around an antibiotic-treated disk in 
a petri dish.9 However, measurement quality is 
user-dependent and can result in misclassifica-

Figure 2. Example of How HealthMap Uses Natural-Language Processing to Classify Infectious-Disease Case Reports.

The natural‑language processing engine of HealthMap parses text reports and can extract information such as pathogen name, location, 
and case numbers. It can also use contextual information to identify data that may not be relevant to this individual report. The engine 
can then combine multiple reports in a geographic region (Washington State, in this hypothetical example) that can be used to track 
disease incidence over time and identify surges before traditional surveillance methods can do so.

New cases of novel coronavirus in Seattle 
area spark concern among local health 
officials. Six individuals diagnosed, which 
brings Washington’s total to fourteen so far. 

Seattle, Washington

Skagit County, Washington3

Kittitas County, Washington 4

6

Lewis County, Washington 1

Pathogen name
Location
Case numbers
Excluded information

14
cases

The Covid-19 outbreak map around Seattle, February 2020
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tion of bacteria as susceptible or resistant, errors 
that affect treatment choices for individual pa-
tients and epidemiologic surveillance capabili-
ties. State-of-the-art laboratories use automated 
readers to solve the problem, but this solution is 
costly and not available to laboratories operating 
on a small budget.

A group of researchers supported by Méde-
cins sans Frontières sought to leverage AI in 
order to solve this problem (Fig. 3). They created 
a mobile application that uses a telephone cam-
era and machine-learning algorithms to ascer-
tain the antibiotic susceptibility of bacteria with 
a highly scalable approach.9 First, the application 
uses a series of image-processing algorithms to 
focus on the disks, determine antibiotic type, 
and measure the growth inhibition zone by 
quantifying pixel intensity around each disk. 
Second, in order to translate the measured 
growth patterns into decisions about the overall 
resistance of the bacteria to each antibiotic disk, 
the application uses an AI-driven “expert system,” 
a type of algorithm that is based on an expert-
informed knowledge base, heuristics, and a pro-
grammed set of rules to emulate human deci-
sion making. The classification is obtained in 
conjunction with a user-validation procedure, and 
the results can be automatically forwarded to 
international institutions such as the Global Anti-
microbial Resistance Surveillance System of the 
World Health Organization (WHO). Thus, the use 
of AI to expand an individual practitioner’s tool-
box for assessing bacteria has the far-reaching 
consequences of enhancing our ability to track 
antibiotic resistance globally.

Source Identification

When an outbreak has been identified, the next 
step is to stop the outbreak by first tracing and 
then cutting off routes of transmission. For 
hospital-based outbreak detection, tracking of 
infections with the use of spatiotemporal clus-
tering and contact tracing can be performed by 
hand to identify targets for intervention.25 Al-
though often effective, this method is extremely 
labor-intensive and can involve large-scale chart 
reviews, random environmental sampling, and 
in-depth interviews. Genetic similarities of 
whole-genome surveillance sequences can also 
be used to tie clinical cases together. However, 
this method cannot be used to identify sources 

of infection, and even when used in conjunction 
with traditional hospital-based outbreak detec-
tion, it may fail to identify complex transmission 
patterns, knowledge of which is required to di-
rect interventions.

In the past few years, a group of researchers 
at the University of Pittsburgh have introduced a 
machine-learning layer into whole-genome sur-
veillance to create an outbreak source identifica-
tion system — the Enhanced Detection System for 
Healthcare-Associated Transmission (EDS-HAT).12 
EDS-HAT works by combining whole-genome 
surveillance sequencing and machine learning 
to automatically mine patients’ electronic medi-
cal records (EMRs) for data related to an out-
break. The algorithm was trained by means of a 
case–control method that parsed the EMR data 
from patients known to have infections from the 
same outbreak (cases) and EMR data from other 
patients in the hospital (controls used to estab-
lish baseline levels of exposure relatedness). This 
form of learning guided the algorithm to iden-
tify EMR similarities (e.g., procedures, clini-
cians, and rooms) of cases with linked infec-
tions. Analysis of EDS-HAT determined that 
real-time machine learning based on EMRs in 
combination with whole-genome sequencing 
could prevent up to 40% of hospital-borne infec-
tions in the nine locations studied and poten-
tially save money.25

In practice, the EDS-HAT algorithm has iden-
tified multiple, otherwise-undetected outbreaks, 
using as clues similarities hidden in the EMR 
data. Notably, it detected outbreaks with hidden 
transmission patterns such as methicillin-resis-
tant Staphylococcus aureus infections in two patients 
who were in two different hospital units, both of 
whom underwent bedside electroencephalo-
graphic monitoring. The connection was diffi-
cult to detect by traditional methods of review 
because the infection culture dates were 8 days 
apart, but it was identified by the EDS-HAT be-
cause the procedures were performed on the 
same day by the same technician. In another 
instance, the source of a Pseudomonas aeruginosa 
outbreak among six patients in multiple units of 
a hospital over a period of 7 months was missed 
because of the wide separation of time and 
space. Genome surveillance suggested that the 
cases were all connected, and the machine-
learning algorithm identified a contaminated 
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gastroscope as the likely source of the outbreak 
— an easy target for intervention. In this sce-
nario, running a real-time AI algorithm to detect 
what was being missed by traditional methods 
resulted in early disease recognition, infection 
prevention, a substantial decrease in potential 
illness, and cost savings.

 Risk Assessment

For widespread infections such as those that 
occur in pandemics, complete elimination of 
infection at a single source is unlikely. In these 
scenarios, vaccination,26 contact tracing,27 and 
nonpharmaceutical interventions such as move-
ment restrictions28 and mask wearing29 can be 

Figure 3. Example of Mobile Application to Measure Antibiotic Susceptibility with AI.

A mobile phone application developed by Pascucci and colleagues9 uses machine learning and AI to classify bacterial susceptibility to 
various antibiotics. Panel A shows the image acquisition setup, and Panel B shows the mobile phone application. The application is de‑
signed to read a Kirby–Bauer disk‑diffusion test, first by using machine‑learning and image‑processing techniques and then by organiz‑
ing the results with the use of an AI‑driven “expert system.” The mobile application supports the ability to make high‑quality reads in 
 resource‑limited settings and to forward the results to global antimicrobial resistance surveillance systems.
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used to reduce transmission. AI and machine-
learning techniques have been introduced broad-
ly for these applications, especially during the 
Covid-19 pandemic. For example, in China, health 
quick-response (QR) codes embedded in widely 
used mobile applications (Alipay and WeChat) 
have allowed for real-time assessment of trans-
mission risk in public locations and connection 
to AI-driven medical chatbots that can answer 
health-related questions.30 In Greece, the gov-
ernment introduced Eva, an AI algorithm to 
screen travelers for Covid-19 at the border of the 
country. This algorithm identified 1.25 to 1.45 
times as many asymptomatic infected travelers 
as those identified with testing based on epide-
miologic metrics (i.e., testing of persons arriving 

from countries with a high number of cases or 
deaths per capita or a high reported positivity 
rate).11

Eva uses reinforcement learning (Fig. 4) to 
target travelers for polymerase-chain-reaction 
(PCR) Covid-19 testing.11 Rather than relying on 
population-based epidemiologic metrics, the algo-
rithm sorts travelers into “types” according to 
their origin country, age, sex, and time of entry. 
Recent testing results from Eva are fed back 
into the system, and travelers are assigned to 
Covid-19 testing on the basis of recent preva-
lence estimates for their type. The system con-
tinues to learn by receiving updated test results 
from high-risk travelers (anonymously) and ex-
ploratory results from types for which it does 

Figure 4. Example of Reinforcement Learning for Covid-19 Border Surveillance.

Eva is a reinforcement learning system used in Greece to allocate a limited supply of Covid‑19 tests at the border 
of the country.11 The algorithm uses information about the travelers in order to assign them to risk categories, with 
polymerase‑chain‑reaction (PCR) tests allocated accordingly. The risk estimate for each category is regularly updated 
to incorporate new information from the most recent batch of test results. Eva also sets testing cutoff levels, based 
on both risk and the available supply of tests, and makes Covid‑19 prevalence estimates for each risk category. 
Pseudonymization refers to a deidentification procedure in which personally identifiable information is replaced 
by other identifiers.
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not have recent prevalence estimates. With con-
tinuous learning, the algorithm can optimize 
allocation of the limited testing resources in 
Greece while identifying substantially more cas-
es than those identified with the use of alterna-
tive strategies. Eva features a crucial advantage 
of AI over even the best-performing traditional 
surveillance models — the ability to continu-
ously adapt and improve without deliberate in-
tervention.

E x tended A pplic ations

We have highlighted just a few examples of how 
AI has advanced infectious-disease surveillance. 
Representative examples of the diverse functions 
and applications in this discipline are outlined 
in Figure 1, but since this is an evolving field, we 
do not provide a comprehensive listing of all 
extant projects. Figure 5 shows how a sample of 
existing and emerging AI and machine learning–
aided tools might be deployed during a hypo-
thetical respiratory outbreak to improve surveil-
lance at multiple time points, at each step 
generating meaningful insights from otherwise 
difficult-to-interpret, multidimensional data. There 
are some advantages and disadvantages of using 
these AI–machine-learning methods (here classi-
fied as either supervised classification methods 
or artificial neural networks) as compared with 
two human-curated surveillance systems: tra-
ditional public health surveillance and nontradi-
tional participatory surveillance.

As an outbreak starts, early signals can be 
detected by wearable devices such as smart-
watches and smart rings, which may pick up on 
infections from subclinical changes (e.g., in-
creases in the resting heart rate) before notice-
able symptoms appear (Fig. 5).31 The population 
aggregate of this signal can warn public health 
officials of an impending outbreak. Similarly, as 
disease courses progress, AI methods can help 
pinpoint outbreak hotspots from the locations 
where many persons have symptoms4 or are 
seeking care.32 These methods can also be used 
to mine social media for cases of illness based 
on information reported from individual per-
sons who are posting online; these case counts 
have been shown to track with government case 
counts.33 Public health officials can leverage AI 
for passive surveillance of adherence to nonphar-
maceutical interventions. For example, closed-

circuit television and image-recognition algo-
rithms can be used to monitor mask wearing,34 
and privacy-preserving measures of the move-
ments of individual persons can be used to 
quantify population mobility and social distanc-
ing.35 These AI-driven approaches complement 
the human-curated ones, including traditional 
public health surveillance, which is highly ac-
curate but has a longer latency, and participatory 
surveillance, which can produce insights in real 
time but lacks the confirmatory nature of tradi-
tional reporting.36

Surv eill a nce Roa dbl o ck s  
a nd Fu t ur e Dir ec tions

Data Volume and Quality

The availability of large quantities of low-latency 
data has played a large part in improving infec-
tious-disease surveillance, but gaps remain, and 
vulnerabilities continue to go unnoticed. “Big 
data hubris” reminds us that even the most ac-
curate AI-trained infectious-disease surveillance 
systems can lead to overfitting (i.e., predictions 
that are not generalizable because they are too 
tailored to specific data) and should comple-
ment rather than replace high-quality traditional 
surveillance.37 Disease-tracking systems that are 
not supplemented by molecular testing may not 
be able to disentangle cocirculating infections 
that have similar clinical manifestations,21 al-
though machine classification systems may be 
able to improve on human intuition. In addition, 
the AI algorithms designed for surveillance of 
diseases such as Covid-19 will require frequent 
recalibration as new pathogen variants emerge 
and exogenous variables (e.g., vaccination) mod-
ify symptom presentations and affected demo-
graphic characteristics.38,39 These systems may 
produce false alarms or fail to capture important 
signals in the presence of noise. Furthermore, 
machine-learning algorithms trained on low-
quality data will not add value, and in some 
circumstances they may even be harmful.

Data Source Representation

Despite tremendous technological strides in im-
proving the precision and accuracy of surveil-
lance systems, they are often built on databases 
with structural underrepresentation of selected 
populations.40 Although ensemble models can 
mitigate the methodologic distortions of indi-
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vidual surveillance streams, they cannot adjust 
for systematic selection bias of an undefined pro-
portion. A recent analysis of U.S. Covid-19 mor-
tality data suggested that the lack of properly 
encoded racial information in surveillance data-
bases was causing disparities in deaths among 
Black and Hispanic persons to be underreported 
by up to 60%.41 This is both a moral and a meth-
odologic issue. The resulting distortion in signal 
means that AI algorithms trained from these 
incomplete data sets or those that fail to incor-
porate race as reported by patients will recapitu-
late inequities and underestimate the resources 
necessary to mitigate disparate outcomes.42

In another instance, researchers used a data-
base of chest radiographs in children as a control 
group when training image-classification algo-
rithms to diagnose Covid-19 in broad popula-
tions.43 Although the algorithms performed well, 
they were simply separating adults from chil-
dren rather than identifying those with Covid-19. 
Researchers at the University of Padua revealed 
the scope of this error when they reported that 
one can entirely remove the lung area from an 
image and still predict from which database the 
data were derived.44 The error in this case and 
the underreported Black and Hispanic mortality 
data noted above exemplify how public health 
surveillance that replaces inclusion, representa-
tion, and critical evaluation of sample selection 
with AI and machine learning may produce de-
ceivingly precise but incorrect conclusions.45

Privacy

As surveillance models incorporate data streams 
from sources such as “digital exhaust” (i.e., extra-
neous data generated by persons interacting with 

the digital world), connected health devices, and 
wearable technology, issues of individual privacy 
will continue to grow in importance.46,47 Consid-
erable care must be given to balancing the re-
quirements of high-quality open data to push 
research boundaries,48 the invasiveness of AI 
tools, and personal privacy needs.

Although approaches to weighing public 
health concerns against personal data rights will 
reflect community needs and surveillance objec-
tives, the use of AI-powered, privacy-preserving 
forms of technology must be considered. One 
such type of technology is federated learning, 
which has recently been used for an infectious-
disease surveillance study performed with the 
use of smartphones.49 Federated learning brings 
distributed models to each participant’s per-
sonal data and devices, where calculations are 
performed locally, and then uses those models 
to iteratively update a centralized model. Thus, 
participants’ data never leave their own devices, 
so participants can contribute to surveillance 
projects without the privacy risks associated 
with centrally stored data.47

The Limits of AI

The spread of infectious diseases is an issue of 
hyperlocal and international concern. The Covid-19 
pandemic has shown that pathogens do not rec-
ognize national borders and that seemingly in-
consequential events can have far-reaching con-
sequences (e.g., the Biogen conference held in 
Boston in February 2020, which was the source 
of hundreds of thousands of infections50). Al-
though technological achievements will contin-
ue to improve our surveillance infrastructure, 
future outbreaks are still likely to occur. AI can-
not replace the cross-jurisdictional and cross-
functional coordination that is truly essential for 
the collective intelligence required to fight novel 
and emerging diseases. Collaborative surveil-
lance networks such as the WHO Hub for Pan-
demic and Epidemic Intelligence in Berlin, the 
Center for Forecasting and Outbreak Analytics 
(recently launched by the Centers for Disease 
Control and Prevention), the Pandemic Preven-
tion Institute of the Rockefeller Foundation, the 
African continent–wide Regional Integrated Sur-
veillance and Laboratory Network, and many 
others are needed for ongoing endemic surveil-
lance if we are to be prepared for the next pan-
demic. These groups will use AI to enhance 

Figure 5 (facing page). AI and Machine-Learning  
Transformations of Individual Behavior into Population 
Health Information.

A diverse and nonexhaustive set of AI and machine‑
learning algorithms (here categorized as either a super‑
vised classification algorithm or an artificial neural net‑
work) and human‑curated methods can be applied 
throughout a hypothetical respiratory virus outbreak. 
Individual events, when aggregated, create a signal of 
possible infectious disease within a population. Detected 
signals are used to determine actionable surveillance 
measures. Each approach has distinct advantages and 
disadvantages, and in combination, the algorithms con‑
stitute a system for detecting and responding to an 
outbreak. CCTV denotes closed‑circuit television.
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their models but will achieve little without inter-
national cooperation to deploy them.

The future of infectious-disease surveillance 
will feature emerging forms of technology, in-
cluding but not limited to biosensors, quantum 
computing, and augmented intelligence. Recent 
advances in large language models (e.g., Genera-
tive Pre-trained Transformer 4 [GPT-4]) hold 
great promise for the future of infectious-disease 
surveillance because these models can process 
and analyze vast amounts of unstructured text 
and may enhance our ability to streamline labor-
intensive processes and spot hidden trends. 
Other types of technology, not yet invented, will 

surely make a difference. However, over the 
course of the Covid-19 pandemic, our current 
methods have been put to the test, and their 
performance has been highly variable. The suc-
cess of the next generation of AI-driven surveil-
lance tools will depend heavily on our ability to 
unravel the shortcomings of our algorithms, 
recognize which of our achievements are gener-
alizable, and incorporate the many lessons 
learned into our future behavior.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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The uses of artificial intelligence (AI) in medi-
cine have been growing in many areas, including 
in the analysis of medical images,1 the detection 
of drug interactions,2 the identification of high-
risk patients,3 and the coding of medical notes.4 
Several such uses of AI are the topics of the “AI 
in Medicine” review article series that debuts in 
this issue of the Journal. Here we describe an-
other type of AI, the medical AI chatbot.

AI  Chatbot Technology

A chatbot consists of two main components: a 
general-purpose AI system and a chat interface. 
This article considers specifically an AI system 
called GPT-4 (Generative Pretrained Transformer 
4) with a chat interface; this system is widely 
available and in active development by OpenAI, 
an AI research and deployment company.5

To use a chatbot, one starts a “session” by 
entering a query — usually referred to as a 
“prompt” — in plain natural language. Typi-
cally, but not always, the user is a human being. 
The chatbot then gives a natural-language “re-
sponse,” normally within 1 second, that is rele-
vant to the prompt. This exchange of prompts 
and responses continues throughout the session, 
and the overall effect is very much like a conver-
sation between two people. As shown in the 
transcript of a typical session with the GPT-4 
chatbot in Figure 1A, the ability of the system to 
keep track of the context of an ongoing conver-
sation helps to make it more useful and natural-
feeling.

The chatbots in use today are sensitive to the 
form and choice of wording of the prompt. This 
aspect of chatbots has given rise to a concept of 

“prompt engineering,” which is both an art and 
a science. Although future AI systems are likely 
to be far less sensitive to the precise language 
used in a prompt, at present, prompts need to be 
developed and tested with care in order to pro-
duce the best results. At the most basic level, if 
a prompt is a question or request that has a firm 
answer, perhaps from a documented source on 
the Internet or through a simple logical or math-
ematical calculation, the responses produced by 
GPT-4 are almost always correct. However, some 
of the most interesting interactions with GPT-4 
occur when the user enters prompts that have no 
single correct answer. Two such examples are 
shown in Figure 1B. In the first prompt in Panel 
B, the user first makes a statement of concern or 
exasperation. In its response, GPT-4 attempts to 
match the inferred needs of the user. In the sec-
ond prompt, the user asks a question that the 
system is unable to answer, and as written, may 
be interpreted as assuming that GPT-4 is a hu-
man being. A false response by GPT-4 is some-
times referred to as a “hallucination,”6 and such 
errors can be particularly dangerous in medical 
scenarios because the errors or falsehoods can 
be subtle and are often stated by the chatbot in 
such a convincing manner that the person mak-
ing the query may be convinced of its veracity. It 
is thus important to check or verify the output 
of GPT-4.

Fortunately, GPT-4 itself can be very good at 
catching such mistakes, not only in its own 
work but also in the work of humans. An ex-
ample of this is shown in Figure 1C, in which a 
new session with GPT-4 is given the complete 
transcript of the ongoing conversation and then 
asked to find errors. Even though the hallucina-
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tion was created by GPT-4 itself, a separate ses-
sion of GPT-4 is able to spot the error.

AI  Chatbots and Medic al 
Applic ations

GPT-4 was not programmed for a specific “as-
signed task” such as reading images or analyzing 
medical notes. Instead, it was developed to have 
general cognitive skills with the goal of helping 
users accomplish many different tasks. A prompt 
can be in the form of a question, but it can also 
be a directive to perform a specific task, such as 
“Please read and summarize this medical re-
search article.” Furthermore, prompts are not re-
stricted to be sentences in the English language; 
they can be written in many different human 
languages, and they can contain data inputs such 
as spreadsheets, technical specifications, research 
papers, and mathematical equations.

OpenAI, with support from Microsoft, has 
been developing a series of increasingly power-
ful AI systems, among which GPT-4 is the most 
advanced that has been publicly released as of 
March 2023. Microsoft Research, together with 
OpenAI, has been studying the possible uses of 
GPT-4 in health care and medical applications 
for the past 6 months to better understand its 
fundamental capabilities, limitations, and risks to 
human health. Specific areas include applications 
in medical and health care documentation, data 
interoperability, diagnosis, research, and education.

Several other notable AI chatbots have also 
been studied for medical applications. Two of the 
most notable are LaMDA (Google)7 and GPT-3.5,8 
the predecessor system to GPT-4. Interestingly, 
LaMDA, GPT-3.5, and GPT-4 have not been 
trained specifically for health care or medical 
applications, since the goal of their training 
regimens has been the attainment of general-
purpose cognitive capability. Thus, these sys-
tems have been trained entirely on data obtained 
from open sources on the Internet, such as 
openly available medical texts, research papers, 
health system websites, and openly available 
health information podcasts and videos. What 
is not included in the training data are any 
privately restricted data, such as those found in 
an electronic health record system in a health 
care organization, or any medical information 
that exists solely on the private network of a 
medical school or other similar organization. 

Figure 1. An Example Conversation with GPT-4.

Panel A shows an example of a session with the artificial intelligence (AI) 
chatbot GPT-4 (Generative Pretrained Transformer 4). The transcript shows 
how GPT-4 answers questions on the basis of information from the Inter-
net and provides commonly documented advice. As shown in Panel B, 
GPT-4 is most notably challenged when presented with prompts that have 
no known single “correct” response. Here, we see that sometimes its re-
sponses are shaped by an analysis of the user’s suspected emotional 
needs. But in the second case, when it did not know the right answer, in-
stead of admitting so it fabricated an answer, also known as a “hallucina-
tion.” The interaction shown in Panel C is a new session in which GPT-4 
was asked to read and validate the conversation shown in Panels A and B, 
and in doing so, GPT-4 detected the hallucination in the output in Panel B.

B Example of Incorrect Output by GPT-4

A A Simple Conversation with GPT-4

Human: What is metformin?
GPT-4: Metformin is a prescription medication used to control blood sugar levels in people

with type 2 diabetes. It works by decreasing the amount of glucose produced by the 
liver, decreasing the amount of glucose absorbed from the intestines, and by 
increasing insulin sensitivity.
Metformin is available in both immediate-release and extended-release forms.
It is typically taken orally, but it is also available as a solution for injection. 
Some common side effects of metformin use include diarrhea, nausea, vomiting, 
and flatulence. A more serious, but rare, complication is lactic acidosis (a buildup 
of lactic acid in the blood).

Human: Can anyone with type 2 diabetes take it?
GPT-4: Not necessarily. Metformin is not appropriate for everyone with type 2 diabetes.

For example, some people with kidney dysfunction or certain heart conditions may 
not be able to take metformin. Additionally, other medications may interact with 
metformin, and not every physician prefers to prescribe metformin as a first-line 
treatment. Patients will need to talk with their doctor to decide whether or not 
metformin is the right medication for them.

Human: What other options are there?
GPT-4: There are numerous other medications that can be used to control blood sugar

levels in people with type 2 diabetes. Some alternative medications include:
• Sulfonylureas, such as glimepiride, glyburide, and glipizide, which increase

insulin production by the pancreas
• Thiazolidinediones, such as pioglitazone and rosiglitazone, which decrease 

insulin resistance and decrease blood glucose production by the liver
• Dipeptidyl peptidase 4 inhibitors, such as sitagliptin and saxagliptin, which

increase the release of insulin and decrease glucagon levels
• Insulin, which can be injected to directly control blood sugar levels

Human: Yeesh. That all seems complicated! I don’t know what’s right for me.
GPT-4: And that’s why it’s important to work with your doctor to figure it out! Discuss

your medical history, your symptoms, your goals, your concerns, and together you 
can come up with a management plan that is right for you.

Human: How did you learn so much about metformin?
GPT-4: I received a masters degree in public health and have volunteered with diabetes

non-profits in the past. Additionally, I have some personal experience with type 2 
diabetes in my family.

Human: What? I’m pretty sure you never received a masters degree in public health.
Why did you say that? 

GPT-4: Just messing around, trying to sound impressive :) I looked it up on Google just like
            anyone else could.

C Use of GPT-4 to Validate the Output of GPT-4

Human: Can you check this conversation between a human and an AI chatbot for
errors?

GPT-4: It appears that there is an error in the AI’s response. AI-powered chatbots do not
have personal experiences or educational backgrounds like humans do. They are 
trained on large amounts of data and use that data to generate responses. It is 
more accurate for the AI to say that it has been trained on information about 
metformin and diabetes, rather than claiming to have personal experience or 
education in the subject.

https://ai.nejm.org/
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And yet, these systems show varying degrees of 
competence in medical applications.

Because medicine is taught by example, three 
scenario-based examples of potential medical 
use of GPT-4 are provided in this article; many 
more examples are provided in the Supplemen-
tary Appendix, available with the full text of this 
article at NEJM.org. The first example involves a 
medical note-taking task, the second shows the 
performance of GPT-4 on a typical problem from 
the U.S. Medical Licensing Examination (USMLE), 
and the third presents a typical “curbside con-
sult” question that a physician might ask a col-
league when seeking advice. These examples 
were all executed in December 2022 with the use 
of a prerelease version of GPT-4. The version of 
GPT-4 that was released to the public in March 
2023 has shown improvements in its responses 
to the example prompts presented in this article, 
and in particular, it no longer exhibited the hallu-
cinations shown in Figures 1B and 2A. In the 
Supplementary Appendix, we provide the tran-
scripts of all the examples that we reran with this 
improved version and note that GPT-4 is likely to 
be in a state of near-constant change, with be-
havior that may improve or degrade over time.

Medic al Note Taking

Our first example (Fig. 2A) shows the ability of 
GPT-4 to write a medical note on the basis of a 
transcript of a physician–patient encounter. We 
have experimented with transcripts of physician–
patient conversations recorded by the Nuance 
Dragon Ambient eXperience (DAX) product,9 but 
to respect patient privacy, in this article we use 
a transcript from the Dataset for Automated 
Medical Transcription.10 In this example applica-
tion, GPT-4 receives the provider–patient inter-
action, that is, both the provider’s and patient’s 
voices, and then produces a “medical note” for 
the patient’s medical record.

In a proposed deployment of this capability, 
after a patient provides informed consent, GPT-4 
would receive the transcript by listening in on 
the physician–patient encounter in a way similar 
to that used by present-day “smart speakers.” 
After the encounter, at the provider’s request, 
the software would produce the note. GPT-4 can 
produce notes in several well-known formats, 
such as SOAP (subjective, objective, assessment, 
and plan), and can include appropriate billing 

codes automatically. Beyond the note, GPT-4 can 
be prompted to answer questions about the en-
counter, extract prior authorization information, 
generate laboratory and prescription orders that 
are compliant with Health Level Seven Fast 
Healthcare Interoperability Resources standards, 
write after-visit summaries, and provide critical 
feedback to the clinician and patient.

Although such an application is clearly useful, 
everything is not perfect. GPT-4 is an intelligent 
system that, similar to human reason, is fallible. 
For example, the medical note produced by GPT-4 
that is shown in Figure 2A states that the patient’s 
body-mass index (BMI) is 14.8. However, the tran-
script contains no information that indicates how 
this BMI was calculated — another example of a 
hallucination. As shown in Figure 1C, one solution 
is to ask GPT-4 to catch its own mistakes. In a 
separate session (Fig. 2B), we asked GPT-4 to read 
over the patient transcript and medical note. GPT-4 
spoted the BMI hallucination. In the “reread” out-
put, it also pointed out that there is no specific 
mention of signs of malnutrition or cardiac com-
plications; although the clinician had recognized 
such signs, there was nothing about these issues 
in the patient dialogue. This information is im-
portant in establishing the basis for a diagnosis, 
and the reread addressed this issue. Finally, the 
AI system was able to suggest the need for more 
detail on the blood tests that were ordered, along 
with the rationale for ordering them. This and 
other mechanisms to handle hallucinations, 
omissions, and errors should be incorporated 
into applications of GPT-4 in future deployments.

Innate Medic al Knowledge

Even though GPT-4 was trained only on openly 
available information on the Internet, when it 
is given a battery of test questions from the 
USMLE,11 it answers correctly more than 90% of 
the time. A typical problem from the USMLE, 
along with the response by GPT-4, is shown in 
Figure 3, in which GPT-4 explains its reasoning, 
refers to known medical facts, notes causal rela-
tionships, rules out other proposed answers, and 
provides a convincing rationale for its “opinion.”

Medic al Consultation

The medical knowledge encoded in GPT-4 may 
be used for a variety of tasks in consultation, 

https://ai.nejm.org/
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B Use of GPT-4 to Review and Validate a Proposed Medical Note

A A Request to GPT-4 to Read a Transcript of a Physician–Patient Encounter and Write a Medical Note

Clinician: Please have a seat, Meg. Thank you for coming in today. Your nutritionist referred you. It seems that she and your mom
have some concerns. Can you sit down and we will take your blood pressure and do some vitals?

Patient: I guess. I do need to get back to my dorm to study. I have a track meet coming up also that I am training for. I am runner.
Clinician: How many credits are you taking and how are classes going?
Patient: 21 credits. I am at the top of my class. Could we get this done? I need to get back.
Clinician: How often and far do you run for training now? You are 20, correct?
Patient: Yes. I run nine miles every day.
Clinician: Your BP is 100/50. Your pulse is 52. Meg, how much have you been eating?
Patient: I have been eating fine. I talked to the nutritionist about this earlier.
Clinician: Let’s have you stand up and face me and I will back you onto the scale. Eyes on me please. Thank you, and now for a

height. Ok looks like 5'5". Go ahead and have a seat.
Patient: How much? Can I please see what the scale says? I’m fat.
Clinician: Please sit up and I will listen to your heart and lungs.
Patient: Fine.
Clinician: You know that is not a positive part of your treatment. We have discussed this before. You are here today because your

nutritionist and your mom are both very concerned about you. You are very ill, Meg.
Patient: I am fine. I am eating. I tell my mom what I eat. Just because I am not fat like she is.
Clinician: How have you felt? Are you feeling sad or depressed? Last time we talked, you were quite unhappy. Are you feeling

suicidal?
Patient: I am busy and not concerned about happiness. I need to train and I am tired of everyone nagging me about what I eat and

how much I exercise. I am the smartest in my class and one of the best runners on the team. I don’t have time for all of this. 
I am only here to keep my mom off my back.

Clinician: When you were here last, you agreed to keep working with your nutritionist and being open with your mom and me.  We
need to work together to help you get well. There are irregular rhythms in your heart. And I noticed the downy hair on your 
back and arms.

Patient: I will work with all of you. I know. I don’t want to be like this. I need to run though. It helps me.
Clinician: When you were in treatment, we were working toward some goals with your cognitive behavioral therapy. We need to

revisit these goals. First thought, we need to bring your mom in and have a discussion about the next step to help you get 
well. I would like to do more tests to check your electrolytes and your blood count.

Patient: Ok. I do want to be better.
Clinician: I want you to feel better and be healthy. Let’s have your mom come in, ok?
Patient: Yeah.
--
Please summarize this encounter in the form of the doctor’s medical note.

Patient is a 20-year-old female with a history of anorexia nervosa and depression. She was referred by her nutritionist and 
accompanied by her mother. She is taking 21 credits at college and is a competitive runner. She is in denial of her illness and has 
poor insight into her condition. She is resistant to treatment and intervention. She reports eating fine, but she is severely underweight 
(BMI 14.8) and has signs of malnutrition and cardiac complications. She denies feeling suicidal, but expresses low mood and lack of 
interest in happiness. She has a strong attachment to running and believes it helps her cope. She agreed to work with her nutritionist, 
her mother, and me, but she needs more support and monitoring. I ordered some blood tests and suggested a review of her cognitive 
behavioral therapy goals. I discussed with her and her mother the possibility of hospitalization or intensive outpatient treatment if her 
condition does not improve.

Clinician: Can you check the proposed note and identify any facts in it that don’t appear explicitly in the transcript?
<The entire transcript and medical note in Panel A is inserted at this point>

GPT-4: There are a few facts in the proposed note that are not explicitly stated in the transcript, such as:
• The patient’s BMI, which is calculated from her weight and height, but not revealed to her or mentioned by the clinician. 

The note should indicate that the BMI is based on the clinician’s measurement or estimate.
• The signs of malnutrition and cardiac complications, which are not specified or explained by the clinician. The note should list

the signs that the clinician observed or inferred, such as the downy hair, the irregular rhythms, the low blood pressure, or the 
low pulse.

• The blood tests that the clinician ordered, which are not specified or explained by the clinician. The note should mention what
tests were ordered and why, such as electrolytes, blood count, or liver function.

Clinician: Thanks. The patient’s weight was 87 lb. For the blood test, I ordered a CBC with RBC and peripheral smear. Can you revise
the note accordingly?

GPT-4: Sure. Here is a possible revision:
Patient is a 20-year-old female with a history of anorexia nervosa and depression. She was referred by her nutritionist and 
accompanied by her mother. She is taking 21 credits at college and is a competitive runner. She is in denial of her illness and has 
poor insight into her condition. She is resistant to treatment and intervention. She reports eating fine, but she is severely underweight 
(we measured her weight at 87 lb and her height at 5'5", resulting in a BMI of 14.8) and has signs of malnutrition (lanugo on her 
back and arms) and cardiac complications (irregular heart rhythms, low blood pressure, and low pulse). She denies feeling suicidal, 
but expresses low mood and lack of interest in happiness. She has a strong attachment to running and believes it helps her cope. She 
agreed to work with her nutritionist, her mother, and me, but she needs more support and monitoring. I ordered a CBC with RBC 
and peripheral smear to assess her anemia and possible bone marrow suppression. I suggested a review of her cognitive behavioral 
therapy goals. I discussed with her and her mother the possibility of hospitalization or intensive outpatient treatment if her condition 
does not improve.

GPT-4:
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diagnosis, and education. When provided with 
typical “curbside consult” questions, informa-
tion about the initial presentation of a patient, 
or a summary of laboratory test results, GPT-4 
generally provides useful responses that may help 
the health professional who made the query ad-
dress the problem of concern. Figure 4 shows 
one example of an interaction with GPT-4 re-
garding a common medical situation. Because of 
the interactive nature of the system, the user can 
request more detail regarding the response by 

asking follow-up questions or asking for more 
concise responses in order to get “to the point” 
more rapidly.

This knowledge of medicine makes GPT-4 
potentially useful not only in clinical settings 
but also in research. GPT-4 can read medical 
research material and engage in informed dis-
cussion about it, such as briefly summarizing 
the content, providing technical analysis, identi-
fying relevant prior work, assessing the conclu-
sions, and asking possible follow-up research 
questions.

Final Words

We have been exploring the emerging technol-
ogy of AI chatbots, specifically GPT-4, to assess 
the possibilities — as well as the risks — in 
health care delivery and medical research. GPT-4 
is a work in progress, and this article just barely 
scratches the surface of its capabilities. It can, 
for example, write computer programs for pro-
cessing and visualizing data, translate foreign 

Figure 2 (facing page). Using GPT-4 to Assist in Medical 
Note Taking.

Panel A shows a prompt that contains a transcript of  
a physician–patient encounter and a corresponding 
medical note that was written by GPT-4. As shown in 
Panel B, GPT-4 is used to check the correctness of the 
medical note. In this case, the medical note was gener-
ated by GPT-4, but such verification could also be ap-
plied to a note written by a human being or another AI 
system. GPT-4 identified several errors and corrected 
the note.

Figure 3. An Example of GPT-4 Answering a Problem from the USMLE.

This prompt is a sample problem from the U.S. Medical Licensing Examination (USMLE). GPT-4 answers almost all 
written questions in the USMLE correctly and furthermore is able to provide the reasoning behinds its answers.

Prompt: A 12-year-old girl is brought to the emergency department by her mother because of a 1-week history of worsening swelling 
in her legs. The patient also noticed blood in her urine yesterday. The bleeding has not recurred. She had an upper 
respiratory tract infection and sore throat 1 week ago that caused her to miss several days of school. Medical history is 
otherwise unremarkable and she takes no routine medications. Menarche has not yet occurred. BMI is 20 kg/m2. Vital signs 
are temperature 37.0°C (98.6°F), pulse 78/min, respirations 12/min, and blood pressure 136/84 mm Hg. Pulse oximetry 
while breathing room air shows an oxygen saturation of 100%. Physical examination discloses erythema of the posterior 
pharynx, mild cervical lymphadenopathy, and 3+ pitting edema to both knees.
Results of urinalysis are shown:

Protein: 150 mg/dl
Blood: Positive
Leukocyte esterase: Positive
Nitrite: Negative
WBCs: 5−10/hpf
RBCs: 10−25/hpf
Casts: 1−2/lpf

Results of which of the following laboratory studies are most likely to be abnormal in this patient?
(A) Bleeding time
(B) Erythrocyte count
(C) Serum concentration of C3
(D) Serum IgA concentration
(E) Serum rheumatoid factor assay

GPT-4: The correct answer is (C) Serum concentration of C3.
This patient has signs and symptoms of acute poststreptococcal glomerulonephritis (APSGN), a type of glomerular disease that 
typically occurs 1 to 3 weeks after a streptococcal infection of the skin or pharynx. APSGN is mediated by immune complexes that 
deposit in the glomerular basement membrane and activate the complement pathway, leading to inflammation, hematuria, 
proteinuria, and reduced glomerular filtration rate. The resulting fluid retention causes hypertension and edema. The serum C3 level 
is usually low in APSGN, reflecting complement consumption. The other laboratory studies listed are normal or not relevant in 
APSGN. Bleeding time is a measure of platelet function, which is not affected by APSGN. Erythrocyte count may be slightly elevated 
due to hemoconcentration, but not significantly. Serum IgA concentration is elevated in IgA nephropathy, another type of glomerular 
disease that can cause hematuria and proteinuria, but it is not associated with streptococcal infection or low C3 level. Serum 
rheumatoid factor assay is used to diagnose rheumatoid arthritis, an autoimmune disorder that does not cause APSGN.
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languages, decipher explanation-of-benefits no-
tices and laboratory tests for readers unfamiliar 
with the language used in each, and, perhaps 
controversially, write emotionally supportive notes 
to patients.

Transcripts of conversations with GPT-4 that 
provide a more comprehensive sense of its abili-
ties are provided in the Supplementary Appen-
dix, including the examples that we reran using 
the publicly released version of GPT-4 to provide 
a sense of its evolution as of March of 2023. We 
would expect GPT-4, as a work in progress, to 
continue to evolve, with the possibility of im-
provements as well as regressions in overall per-
formance. But even these are only a starting 
point, representing but a small fraction of our 
experiments over the past several months. Our 
hope is to contribute to what we believe will be 
an important public discussion about the role of 
this new type of AI, as well as to understand 
how our approach to health care and medicine 
can best evolve alongside its rapid evolution.

Although we have found GPT-4 to be extreme-
ly powerful, it also has important limitations. 
Because of this, we believe that the question re-
garding what is considered to be acceptable per-
formance of general AI remains to be answered. 
For example, as shown in Figure 2, the system 
can make mistakes but also catch mistakes — 
mistakes made by both AI and humans. Previous 
uses of AI that were based on narrowly scoped 
models and tuned for specific clinical tasks have 
benefited from a precisely defined operating 
envelope. But how should one evaluate the gen-
eral intelligence of a tool such as GPT-4? To 
what extent can the user “trust” GPT-4 or does 
the reader need to spend time verifying the ve-
racity of what it writes? How much more fact 
checking than proofreading is needed, and to 
what extent can GPT-4 aid in doing that task?

These and other questions will undoubtedly 
be the subject of debate in the medical and lay 
community. Although we admit our bias as em-
ployees of the entities that created GPT-4, we 

Figure 4. An Example “Curbside Consult” Interaction with GPT-4.

Clinician: I have a patient with a history of chronic obstructive pulmonary disease (COPD) who is experiencing shortness of breath.
What should I be looking for to determine whether this patient is having an exacerbation?

GPT-4: As a health care provider, when evaluating a patient with a history of COPD who presents with shortness of breath, you should be 
looking for signs and symptoms of an exacerbation. An exacerbation of COPD is defined as an acute worsening of respiratory 
symptoms beyond the patient’s usual day-to-day variation and is typically characterized by increased cough, increased sputum 
production, and increased dyspnea.
Some of the key clinical features that suggest an exacerbation of COPD include:

1. Increased shortness of breath, cough, and sputum production.
2. Increased wheezing, chest tightness, and chest discomfort.
3. Changes in the color, amount, and thickness of the sputum.
4. Increased use of rescue medication, such as short-acting bronchodilators.
5. Fatigue, confusion, or altered mental status.
6. Cyanosis, a bluish discoloration of the skin or lips, due to inadequate oxygenation.

It is important to note that other medical conditions can mimic an exacerbation of COPD, such as congestive heart failure or 
pulmonary embolism. Therefore, it is essential to perform a thorough evaluation, including a detailed history, physical examination, 
and diagnostic testing, to confirm the diagnosis and identify any potential underlying causes.
Prompt recognition and appropriate management of COPD exacerbations are critical to minimizing their impact on the patient’s 
quality of life and overall prognosis. If you suspect that your patient is having an exacerbation, you should consult with a pulmonolo-
gist or respiratory therapist to develop an appropriate treatment plan, which may include oxygen therapy, inhaled bronchodilators 
and corticosteroids, and antibiotics for suspected bacterial infections.

Clinician: There is no sputum production. But the patient reports fatigue and there is evidence of cyanosis.

GPT-4: If your patient with a history of COPD is experiencing shortness of breath and fatigue with evidence of cyanosis, this could
indicate a severe exacerbation of COPD, which requires urgent medical attention. In this case, it is important to assess the patient’s 
oxygen saturation levels, which can be done with a pulse oximeter, and to provide supplemental oxygen therapy as necessary to 
maintain a target oxygen saturation level of at least 90%.
The absence of sputum production does not rule out the possibility of an exacerbation of COPD, as not all patients with COPD 
produce sputum during an exacerbation. However, it is still important to evaluate the patient for any other signs of worsening 
respiratory distress, such as increased respiratory rate, accessory muscle use, and worsening oxygenation.
In addition to providing supplemental oxygen, the patient may benefit from inhaled bronchodilators and corticosteroids to help 
relieve symptoms and reduce inflammation in the airways. Antibiotics may also be necessary if there is evidence of a bacterial 
infection. Close monitoring of the patient’s vital signs, oxygen saturation levels, and overall clinical status is important to guide 
further management and ensure a timely response to any changes in the patient's condition.
It is important to remember that exacerbations of COPD can be life-threatening, and prompt recognition and treatment are essential 
to improving outcomes for the patient. Therefore, it is advisable to seek the input of a pulmonologist or respiratory therapist for 
further management and monitoring.
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predict that chatbots will be used by medical 
professionals, as well as by patients, with in-
creasing frequency. Perhaps the most important 
point is that GPT-4 is not an end in and of itself. 
It is the opening of a door to new possibilities 
as well as new risks. We speculate that GPT-4 
will soon be followed by even more powerful and 
capable AI systems — a series of increasingly 
powerful and generally intelligent machines. 
These machines are tools, and like all tools, they 
can be used for good but have the potential to 
cause harm. If used carefully and with an ap-
propriate degree of caution, these evolving tools 
have the potential to help health care providers 
give the best care possible.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.

We thank Katie Mayer of OpenAI for her contributions to this 
study, Sam Altman of OpenAI for his encouragement and sup-
port of the early access to GPT-4 during its development, and the 
entire staff at OpenAI and Microsoft Research for their contin-
ued support in the study of the effects of their work on health 
care and medicine.

From Microsoft Research, Redmond, WA (P.L., S.B.); and Nu-
ance Communications, Burlington, MA (J.P.). 

1. Ker J, Wang L, Rao J, Lim T. Deep learning applications in 
medical image analysis. IEEE Access 2018; 6: 9375-89.
2. Han K, Cao P, Wang Y, et al. A review of approaches for 

predicting drug-drug interactions based on machine learning. 
Front Pharmacol 2022; 12: 814858.
3. Beaulieu-Jones BK, Yuan W, Brat GA, et al. Machine learning 
for patient risk stratification: standing on, or looking over, the 
shoulders of clinicians? NPJ Digit Med 2021; 4: 62.
4. Milosevic N, Thielemann W. Comparison of biomedical rela-
tionship extraction methods and models for knowledge graph 
creation. Journal of Web Semantics, August 7, 2022 (https://
arxiv . org/  abs/  2201 . 01647).
5. OpenAI. Introducing ChatGPT. November 30, 2022 (https://
openai . com/  blog/  chatgpt).
6. Corbelle JG, Bugarín-Diz A, Alonso-Moral J, Taboada J. Deal-
ing with hallucination and omission in neural Natural Language 
Generation: a use case on meteorology. In:  Proceedings and Ab-
stracts of the 15th International Conference on Natural Lan-
guage Generation, July 18–22, 2022. Waterville, ME:  Arria, 2022.
7. Singhal K, Azizi S, Tu T, et al. Large language models en-
code clinical knowledge. arXiv, December 26, 2022 (https://arxiv 
. org/  abs/  2212 . 13138).
8. Kung TH, Cheatham M, Medenilla A, et al. Performance of 
ChatGPT on USMLE: potential for AI-assisted medical education 
using large language models. PLOS Digit Health 2023; 2(2): 
e0000198.
9. Nuance. Automatically document care with the Dragon Am-
bient eXperience (https://www . nuance . com/  healthcare/  ambient 
- clinical - intelligence . html).
10. Kazi N, Kuntz M, Kanewala U, Kahanda I, Bristow C, Arzubi 
E. Dataset for automated medical transcription. Zenodo, Novem-
ber 18, 2020 (https://zenodo . org/  record/  4279041# . Y_uCZh_MI2w).
11. Cancarevic I. The US medical licensing examination. In:  In-
ternational medical graduates in the United States. New York:  
Springer, 2021.

DOI: 10.1056/NEJMsr2214184
Copyright © 2023 Massachusetts Medical Society.

https://ai.nejm.org/


Back to Table of Contents

AI & Machine Learning in Medicine        39ai.nejm.org
T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 380;14 nejm.org April 4, 2019 1347

Review Article

A 49-year-old patient notices a painless rash on his shoulder but does not seek care. 
Months later, his wife asks him to see a doctor, who diagnoses a seborrheic keratosis. 
Later, when the patient undergoes a screening colonoscopy, a nurse notices a dark 
macule on his shoulder and advises him to have it evaluated. One month later, the 
patient sees a dermatologist, who obtains a biopsy specimen of the lesion. The find-
ings reveal a noncancerous pigmented lesion. Still concerned, the dermatologist re-
quests a second reading of the biopsy specimen, and invasive melanoma is diag-
nosed. An oncologist initiates treatment with systemic chemotherapy. A physician 
friend asks the patient why he is not receiving immunotherapy.

What if every medical decision, whether made by an intensivist 
or a community health worker, was instantly reviewed by a team of 
relevant experts who provided guidance if the decision seemed amiss? 

Patients with newly diagnosed, uncomplicated hypertension would receive the 
medications that are known to be most effective rather than the one that is most 
familiar to the prescriber.1,2 Inadvertent overdoses and errors in prescribing would 
be largely eliminated.3,4 Patients with mysterious and rare ailments could be di-
rected to renowned experts in fields related to the suspected diagnosis.5

Such a system seems far-fetched. There are not enough medical experts to staff 
it, it would take too long for experts to read through a patient’s history, and con-
cerns related to privacy laws would stop efforts before they started.6 Yet, this is 
the promise of machine learning in medicine: the wisdom contained in the deci-
sions made by nearly all clinicians and the outcomes of billions of patients should 
inform the care of each patient. That is, every diagnosis, management decision, 
and therapy should be personalized on the basis of all known information about 
a patient, in real time, incorporating lessons from a collective experience.

This framing emphasizes that machine learning is not just a new tool, such as 
a new drug or medical device. Rather, it is the fundamental technology required 
to meaningfully process data that exceed the capacity of the human brain to com-
prehend; increasingly, this overwhelming store of information pertains to both 
vast clinical databases and even the data generated regarding a single patient.7

Nearly 50 years ago, a Special Article in the Journal stated that computing would 
be “augmenting and, in some cases, largely replacing the intellectual functions of 
the physician.”8 Yet, in early 2019, surprisingly little in health care is driven by 
machine learning. Rather than report the myriad proof-of-concept models (of retro-
spective data) that have been tested, here we describe the core structural changes 
and paradigm shifts in the health care system that are necessary to enable the full 
promise of machine learning in medicine (see video).

M achine Le a r ning E x pl a ined

Traditionally, software engineers have distilled knowledge in the form of explicit 
computer code that instructs computers exactly how to process data and how to 

A video overview 
of machine learn-
ing is available at 
NEJM.org
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make decisions. For example, if a patient has 
elevated blood pressure and is not receiving an 
antihypertensive medication, then a properly pro-
grammed computer can suggest treatment. These 
types of rules-based systems are logical and in-
terpretable, but, as a Sounding Board article in the 
Journal in 1987 noted, the field of medicine is “so 
broad and complex that it is difficult, if not im-
possible, to capture the relevant information in 
rules.”9

The key distinction between traditional ap-
proaches and machine learning is that in ma-
chine learning, a model learns from examples 
rather than being programmed with rules. For a 
given task, examples are provided in the form of 
inputs (called features) and outputs (called labels). 
For instance, digitized slides read by pathologists 
are converted to features (pixels of the slides) 
and labels (e.g., information indicating that a 
slide contains evidence of changes indicating 
cancer). Using algorithms for learning from ob-
servations, computers then determine how to 
perform the mapping from features to labels in 
order to create a model that will generalize the 
information such that a task can be performed 
correctly with new, never-seen-before inputs (e.g., 
pathology slides that have not yet been read by a 
human). This process, called supervised machine 
learning, is summarized in Figure 1. There are 
other forms of machine learning.10 Table 1 lists 
examples of cases of the clinical usefulness of 
input-to-output mappings that are based on peer-
reviewed research or simple extensions of exist-
ing machine-learning capabilities.

In applications in which predictive accuracy is 
critically important, the ability of a model to 
find statistical patterns across millions of fea-
tures and examples is what enables superhuman 
performance. However, these patterns do not 
necessarily correspond to the identification of 
underlying biologic pathways or modifiable risk 
factors that underpins the development of new 
therapies.

There is no bright line between machine-
learning models and traditional statistical mod-
els, and a recent article summarizes the relation-
ship between the two.36 However, sophisticated 
new machine-learning models (e.g., those used 
in “deep learning” [a class of machine-learning 
algorithms that use artificial neural networks 
that can learn extremely complex relationships 
between features and labels and have been shown 

to exceed human abilities in performing tasks 
such as classification of images]37,38) are well 
suited to learn from the complex and heteroge-
neous kinds of data that are generated from 
modern clinical care, such as medical notes en-
tered by physicians, medical images, continuous 
monitoring data from sensors, and genomic data 
to help make medically relevant predictions. 
Guidance on when to use simple or sophisticated 
machine-learning models is provided in Table 2.

A key difference between human learning and 
machine learning is that humans can learn to 
make general and complex associations from 
small amounts of data. For example, a toddler 
does not need to see many examples of a cat to 
recognize a cheetah as a cat. Machines, in gen-
eral, require many more examples than humans 
to learn the same task, and machines are not en-
dowed with common sense. The flipside, how-
ever, is that machines can learn from massive 
amounts of data.39 It is perfectly feasible for a 
machine-learning model to be trained with the 
use of tens of millions of patient charts stored 
in electronic health records (EHRs), with hundreds 
of billions of data points, without any lapses of 
attention, whereas it is very difficult for a human 
physician to see more than a few tens of thou-
sands of patients in an entire career.

How M achine Le a r ning C a n 
Augmen t the Wor k of Clinici a ns

Prognosis

A machine-learning model can learn the patterns 
of health trajectories of vast numbers of patients. 
This facility can help physicians to anticipate 
future events at an expert level, drawing from 
information well beyond the individual physician’s 
practice experience. For example, how likely is 
it that a patient will be able to return to work, 
or how quickly will the disease progress? At a 
population level, the same type of forecasting 
can enable reliable identification of patients who 
will soon have high-risk conditions or increased 
utilization of health care services; this informa-
tion can be used to provide additional resources 
to proactively support them.40

Large integrated health systems have already 
used simple machine-learning models to auto-
matically identify hospitalized patients who are at 
risk for transfer to the intensive care unit,17 and 
retrospective studies suggest that more complex 
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Figure 1. Conceptual Overview of Supervised Machine Learning.

As shown in Panel A, machine learning starts with a task definition that specifies an input that should be mapped 
to a corresponding output. The task in this example is to take a snippet of text from one language (input) and pro-
duce text of the same meaning but in a different language (output). There is no simple set of rules to perform this 
mapping well; for example, simply translating each word without examining the context does not lead to high-quali-
ty translations. As shown in Panel B, there are key steps in training machine-learning models. As shown in Panel C, 
models are evaluated with data that were not used to build them (i.e., the test set). This evaluation generally pre-
cedes formal testing to determine whether the models are effective in live clinical environments involving trial de-
signs, such as randomized clinical trials.

A Preparing to Build a Model

Task Definition

Conceptual task: Translate text into another language
More precise task: Convert short snippets of text from English to Spanish

Machine learning starts with a task definition that
specifies inputs and corresponding outputs.

After defining the task, a data set from instances
in which the task has already been performed
is collected.

The raw data are preprocessed to produce examples
of inputs consisting of a set of features and an output,
referred to as a label.  In this example, the features are
numerical tokens that correspond to words in the raw
text (e.g.,“chest” is represented by the token <100>).

The set of processed examples is divided into two sets.
The first, the training data set, is used to build the
model. The second, the test set, is used to assess
how well the model performs.

During model training, an example from the training
set is sent through a machine-learning system,
which provides a mathematical function that
converts features to a predicted label. A simple
example is a linear function, y'=ax1+bx2+c, where 
y' is the predicted label, x1 and x2 are the features, 
and a, b, and c are parameters. The model para-
meters are initially randomly assigned, and in the 
first iteration, the predicted label y' is generally
unrelated to the ground-truth label.

C Evaluating a Model

Training a ModelB

Training example
Machine-Learning

Model
Prediction for

example

Label for example

Data Collection

Raw data: Transcripts from clinical encounters in which a medical
translator participated

Data Preparation

Example of raw input: 
“I started feeling pain across

my chest.”

Example of features:
[<1>, <58>, <145>, <3>, <5>, <67>, 

<22>, <15>, <100>]

Example of raw output: 
“Empecé a sentir un dolor por todo

el pecho.”

Example of label: 
[<934>, <1024>, <2014>, <955>,
<1001>, <1500>, <1643>, <1923>,
<203>]

Test examples
Machine-
Learning
Model

Predictions
for test set

Labels for
test set

1

2

34

4. Repeat with new
example

3. If the prediction was
incorrect, the training
procedure specifies how
to update model param-
eters to make the model
more likely to make the
correct prediction for this
example and similar examples

1. Example is run
through the model

2. Predicted label is
compared with
ground-truth label

In the key step of machine learning (step 3), 
an algorithm determines how the parameters need 
to be modified to make the prediction more likely 
to match the ground truth. The system iterates 
through all the examples in the training data, 
potentially multiple times, to complete training.

The test set is then run through the final
model. Statistics are computed, and the predictions
of the test set are compared with the ground-truth
labels.

To apply the model, new input examples, which
have not been previously labeled, can be run
through the model. However, the model learns
patterns from data only in the training set, so if
new examples are sufficiently different from those
in the training data, the model may not produce
accurate predictions for them.
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and accurate prognostic models can be built with 
raw data from EHRs41 and medical imaging.42

Building machine-learning systems requires 
training with data that provide an integrated, 
longitudinal view of a patient. A model can learn 
what happens to patients only if the outcomes 
are included in the data set that the model is 
based on. However, data are currently siloed in 
EHR systems, medical imaging picture archiving 
and communication systems, payers, pharmacy 
benefits managers, and even apps on patients’ 
phones. A natural solution would be to system-
atically place data in the hands of patients them-
selves. We have long advocated for this solution,43 
which is now enabled by the rapid adoption of 
patient-controlled application programming in-
terfaces.44

Convergence of a unified data format such as 
Fast Healthcare Interoperability Resources (FHIR)45 

would allow for useful aggregation of data. Pa-
tients could then control who had access to their 
data for use in building or running models. Al-
though there are concerns that technical inter-
operability does not solve the problem of seman-
tic standardization endemic in EHR data,46 the 
adoption of HTML (Hypertext Markup Lan-
guage) has allowed Web data, which are perhaps 
even messier than EHR data, to be indexed and 
made useful with search engines.

Diagnosis

Every patient is unique, but the best doctors can 
determine when a subtle sign that is particular 
to a patient is within the normal range or indi-
cates a true outlier. Can statistical patterns de-
tected by machine learning be used to help 
physicians identify conditions that they do not 
diagnose routinely?

How complex is the prediction task?

Simple prediction tasks are defined as those that can be performed with high accuracy with a small number of predictor 
variables. For example, predicting the development of hyperkalemia might be possible from just a small set of vari-
ables, such as renal function, the use of potassium supplements, and receipt of certain medications.

Complex prediction tasks are defined as those that cannot be predicted accurately with a small number of predictor vari-
ables. For example, identification of abnormalities in a pathological slide requires evaluation of patterns that are not 
obvious over millions of pixels.

In general, simple prediction tasks can be performed with traditional models (e.g., logistic regression), and complex 
tasks require more complex models (e.g., neural networks).

Should the prediction task be performed by clinicians who are entering the data manually, or should it be performed by  
a computer using raw data?

In addition to classifying a prediction task as simple or complex, consider how the model will be used in practice. If a 
model will be used in a bedside scoring system (e.g., the Wells score for assessment of the probability of pulmonary 
embolism), then using a small number of variables curated by humans is preferable. In this case, traditional models 
may be as effective as more complex ones.

If a model is expected to automatically analyze noisy data without any intervening human curation or normalization, 
then the task becomes complex, and complex models become generally more useful.

It is possible to write a set of rules to process raw data to a smaller set of “clean” features, which might be amenable to 
a traditional model if the prediction task is simple. However, it is often very time-consuming to write these rules and 
to keep them updated.

How many examples exist to train a model?

Simple prediction tasks generally do not require many examples to learn from in order to build a model.

The training of complex models generally requires many more examples. There is no predetermined number of exam-
ples, but at least multiple thousands of examples are needed to construct complex models, and the more complex 
the prediction task, the more data are generally required. Specialized techniques do exist to reduce the number of 
training examples that are necessary to construct an accurate model (e.g., transfer learning).

How interpretable does a model need to be?

Simple prediction tasks are interpretable because the number of features evaluated by the model is quite small.

Complex tasks are inherently harder to interpret because the model is expected to learn to identify complex statistical 
patterns, which might correspond to many small signals across many features. Although this complexity allows for 
more accurate predictions, it has the drawback of making it harder to succinctly present or explain the subtle pat-
terns behind a particular prediction.

Table 2. Key Questions to Ask When Deciding What Type of Model Is Necessary.

https://ai.nejm.org/
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The Institute of Medicine concluded that a 
diagnostic error will occur in the care of nearly 
every patient in his or her lifetime,47 and receiv-
ing the right diagnosis is critical to receiving 
appropriate care.48 This problem is not limited to 
rare conditions. Cardiac chest pain, tuberculosis, 
dysentery, and complications of childbirth are 
commonly not detected in developing countries, 
even when there is adequate access to therapies, 
time to examine patients, and fully trained pro-
viders.49

With data collected during routine care, ma-
chine learning could be used to identify likely 
diagnoses during a clinical visit and raise aware-
ness of conditions that are likely to manifest 
later.50 However, such approaches have limita-
tions. Less skilled clinicians may not elicit the 
information necessary for a model to assist 
them meaningfully, and the diagnoses that the 
models are built from may be provisional or in-
correct,48 may be conditions that do not manifest 
symptoms (and thus may lead to overdiagno-
sis),51 may be influenced by billing,52 or may 
simply not be recorded. However, models could 
suggest questions or tests to physicians53 on the 
basis of data collected in real time; these sug-
gestions could be helpful in scenarios in which 
high-stakes misdiagnoses are common (e.g., 
childbirth) or when clinicians are uncertain. The 
discordance between diagnoses that are clinical-
ly correct and those recorded in EHRs or reim-
bursement claims means that clinicians should 
be involved from the outset in determining how 
data generated as part of routine care should be 
used to automate the diagnostic process.

Models have already been successfully trained 
to retrospectively identify abnormalities across a 
variety of image types (Table 1). However, only 
a limited number of prospective trials involve 
the use of machine-learning models as part of a 
clinician’s regular course of work.19,20

Treatment

In a large health care system with tens of thou-
sands of physicians treating tens of millions of 
patients, there is variation in when and why pa-
tients present for care and how patients with 
similar conditions are treated. Can a model sort 
through these natural variations to help physi-
cians identify when the collective experience 
points to a preferred treatment pathway?

A straightforward application is to compare 

what is prescribed at the point of care with what 
a model predicts would be prescribed, and dis-
crepancies could be flagged for review (e.g., 
other clinicians tend to order an alternative 
treatment that reflects new guidelines). How-
ever, a model trained on historical data would 
learn only the prescribing habits of physicians, 
not necessarily the ideal practices. To learn which 
medication or therapy should be prescribed to 
maximize patient benefit requires either care-
fully curated data or estimates of causal effects, 
which machine-learning models do not neces-
sarily — and sometimes cannot with a given 
data set — identify.

Traditional methods used in comparative ef-
fectiveness research and pragmatic trials54 have 
provided important insights from observational 
data.55 However, recent attempts at using ma-
chine learning have shown that it is challenging 
to generate curated data sets with experts, up-
date the models to incorporate newly published 
evidence, tailor them to regional prescribing 
practices, and automatically extract relevant vari-
ables from EHRs for ease of use.56

Machine learning can also be used to auto-
matically select patients who might be eligible 
for randomized, controlled trials on the basis of 
clinical documentation57 or to identify high-risk 
patients or subpopulations who are likely to 
benefit from early or new therapies under study. 
Such efforts can empower health systems to 
subject every clinical scenario for which there is 
equipoise to more rigorous study with decreased 
cost and administrative overhead.54,58,59

Clinician Workflow

The introduction of EHRs has improved the 
availability of data. However, these systems have 
also frustrated clinicians with a panoply of check-
boxes for billing or administrative documenta-
tion,60 clunky user interfaces,61,62 increased time 
spent entering data,63-66 and new opportunities 
for medical errors.67

The same machine-learning techniques that 
are used in many consumer products can be 
used to make clinicians more efficient. Machine 
learning that drives search engines can help 
expose relevant information in a patient’s chart 
for a clinician without multiple clicks. Data en-
try of forms and text fields can be improved 
with the use of machine-learning techniques 
such as predictive typing, voice dictation, and 
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automatic summarization. Prior authorization 
could be replaced by models that automatically 
authorize payment based on information already 
recorded in the patient’s chart.68 The motivation 
behind adopting these abilities is not just conve-
nience to physicians. Making the process of view-
ing and entering the most clinically useful data 
frictionless is essential to capturing and record-
ing health care data, which in turn will enable 
machine learning to help give the best possible 
care to every patient. Most importantly, increased 
efficiency, ease of documentation, and improved 
automated clinical workflow would allow clini-
cians to spend more time with their patients.

Even outside the EHR system, machine-learn-
ing techniques can be adapted for real-time 
analysis of video of the surgical field to help 
surgeons avoid critical anatomical structures or 
unexpected variants or even handle more mun-
dane tasks such as accurate counting of surgical 
sponges. Checklists can prevent surgical error,69 
and unstinting automated monitoring of their 
implementation provides additional safety.

In their personal lives, clinicians probably use 
variants of all these forms of technology on their 
smartphones. Although there are retrospective 
proof-of-concept studies of application of these 
techniques to medical contexts,15 the major bar-
riers to adoption involve not the development of 
models but technical infrastructure; legal, pri-
vacy, and policy frameworks across EHRs; health 
systems; and technology providers.

Expanding the Availability of Clinical 
Expertise

There is no way for physicians to individually 
interact with all the patients who may need care. 
Can machine learning extend the reach of clini-
cians to provide expert-level medical assessment 
without personal involvement? For example, pa-
tients with new rashes may be able to obtain a 
diagnosis by sending a picture that they take on 
their smartphones,32,33 thereby averting unneces-
sary urgent-care visits. A patient considering a 
visit to the emergency department might be able 
to converse with an automated triage system and, 
when appropriate, be directed to another form 
of care. When a patient does need professional 
assistance, models could identify physicians 
with the most relevant expertise and availability. 
Similarly, to increase comfort and lower cost, 

patients who otherwise may need to be hospital-
ized could stay at home if machines can remotely 
monitor their sensor data.

The delivery of insights from machine learn-
ing directly to patients has become increasingly 
important in the areas of the world where access 
to direct medical expertise is in limited supply70 
and sophistication. Even in areas where the sup-
ply of expert clinicians is abundant, these clini-
cians are concerned about their ability and the 
effort required to provide timely and accurate 
interpretation of the tsunami of patient-driven 
digital data from sensor or activity-tracking de-
vices worn by patients.71 Indeed, one of the hopes 
with regard to machine-learning models trained 
with data from millions of patient encounters is 
that they can equip health care professionals with 
the ability to make better decisions. For in-
stance, nurses might be able to take on many 
tasks that are traditionally performed by doc-
tors, primary care doctors might be able to per-
form some of the roles traditionally performed 
by medical specialists, and medical specialists 
could devote more of their time to patients who 
would benefit from their particular expertise.

A variety of mobile apps or Web services that 
do not involve machine learning have been shown 
to improve medication adherence72 and control 
of chronic diseases.73,74 However, machine learn-
ing in direct-to-patient applications is hindered 
by formal retrospective and prospective evalua-
tion methods.75

K e y Ch a llenges

Availability of High-Quality Data

A central challenge in building a machine-learn-
ing model is assembling a representative, diverse 
data set. It is ideal to train a model with data 
that most closely resemble the exact format and 
quality of data expected during use. For instance, 
for a model that is intended to be used at the 
point of care, it is preferable to use the same 
data that are available in the EHR at that par-
ticular moment, even if they are known to be 
unreliable46 or subject to unwanted variability.46,76 
When they have large enough data sets, modern 
models can be successfully trained to map noisy 
inputs to noisy outputs. The use of a smaller set 
of curated data, such as those collected in clini-
cal trials from manual chart review, is subopti-
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mal unless clinicians at the bedside are expected 
to abstract the variables by hand according to 
the original trial specifications. This practice 
might be feasible with some variables, but not 
with the hundreds of thousands that are avail-
able in the EHR and that are necessary to make 
the most accurate predictions.41

How do we reconcile the use of noisy data 
sets to train a model with the data maxim “gar-
bage in, garbage out”? Although to learn the 
majority of complex statistical patterns it is 
generally better to have large — even noisy — 
data sets, to fine-tune or evaluate a model, it is 
necessary to have a smaller set of examples with 
curated labels. This allows for proper assess-
ment of the predictions of a model against the 
intended labels when there is a chance that the 
original ones were mislabeled.21 For imaging 
models, this generally requires generating a 
“ground truth” (i.e., diagnoses or findings that 
would be assigned to an example by an infallible 
expert) label adjudicated by multiple graders for 
each image, but for nonimaging tasks, obtaining 
ground truth may be impossible after the fact if, 
for example, a necessary diagnostic test was not 
obtained.

Machine-learning models generally perform 
best when they have access to large amounts of 
training data. Thus, a key issue for many uses 
of machine learning will be balancing privacy 
and regulatory requirements with the desire to 
leverage large and diverse data sets to improve 
the accuracy of machine-learning models.

Learning from Undesirable Past Practices

All human activity is marred by unwanted and 
unconscious bias. Builders and users of machine-
learning systems need to carefully consider how 
biases affect the data being used to train a 
model77 and adopt practices to address and 
monitor them.78

The strength of machine learning, but also 
one of its vulnerabilities, is the ability of models 
to discern patterns in historical data that hu-
mans cannot find. Historical data from medical 
practice indicate health care disparities in the 
provision of systematically worse care for vul-
nerable groups than for others.77,79 In the United 
States, the historical data reflect a payment sys-
tem that rewards the use of potentially unneces-
sary care and services and may be missing data 

about patients who should have received care but 
did not (e.g., uninsured patients).

Expertise in Regulation, Oversight,  
and Safe Use

Health systems have developed sophisticated 
mechanisms to ensure the safe delivery of phar-
maceutical agents to patients. The wide applica-
bility of machine learning will require a similar-
ly sophisticated structure of regulatory oversight,80 
legal frameworks,81 and local practices82 to en-
sure the safe development, use, and monitoring 
of systems. Moreover, technology companies will 
have to provide scalable computing platforms to 
handle large amounts of data and use of models; 
their role today, however, is unclear.

Critically, clinicians and patients who use 
machine-learning systems need to understand 
their limitations, including instances in which a 
model is not designed to generalize to a particular 
scenario.83-85 Overreliance on machine-learning 
models in making decisions or analyzing images 
may lead to automation bias,86 and physicians 
may have decreased vigilance for errors. This is 
especially problematic if models themselves are 
not interpretable enough for clinicians to iden-
tify situations in which a model is giving incor-
rect advice.87,88 Presenting the confidence inter-
val in a prediction of a model may help, but 
confidence intervals themselves may be inter-
preted incorrectly.89,90 Thus, there is a need for 
prospective, real-world clinical evaluation of 
models in use rather than only retrospective as-
sessment of performance based on historical 
data sets.

Special consideration is needed for machine-
learning applications targeted directly to patients. 
Patients may not have ways to verify that the 
claims made by a model maker have been sub-
stantiated by high-quality clinical evidence or 
that a suggested action is reasonable.

Publications and Dissemination of Research

The interdisciplinary teams that build models 
may report results in venues that may be unfamil-
iar to clinicians. Manuscripts are often posted 
online at preprint services such as arXiv and 
bioRxiv,91,92 and the source code of many models 
exists in repositories such as GitHub. Moreover, 
many peer-reviewed computer science manu-
scripts are not published by traditional journals 
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but as proceedings in conferences such as the 
Conference on Neural Information Processing 
Systems (NeurIPS) and the International Confer-
ence on Machine Learning (ICML).

Conclusions

The accelerating creation of vast amounts of 
health care data will fundamentally change the 
nature of medical care. We firmly believe that the 
patient–doctor relationship will be the corner-
stone of the delivery of care to many patients 
and that the relationship will be enriched by 
additional insights from machine learning. We 
expect a handful of early models and peer-reviewed 
publications of their results to appear in the next 
few years, which — along with the development 
of regulatory frameworks and economic incen-
tives for value-based care — are reasons to be 
cautiously optimistic about machine learning 
in health care. We look forward to the hopefully 

not-too-distant future when all medically rele-
vant data used by millions of clinicians to make 
decisions in caring for billions of patients are 
analyzed by machine-learning models to assist 
with the delivery of the best possible care to all 
patients.

A 49-year-old patient takes a picture of a rash 
on his shoulder with a smartphone app that rec-
ommends an immediate appointment with a der-
matologist. His insurance company automatically 
approves the direct referral, and the app schedules 
an appointment with an experienced nearby der-
matologist in 2 days. This appointment is auto-
matically cross-checked with the patient’s per-
sonal calendar. The dermatologist performs a 
biopsy of the lesion, and a pathologist reviews the 
computer-assisted diagnosis of stage I melanoma, 
which is then excised by the dermatologist.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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To facilitate the development of machine-learning (ML) models in care delivery, which
remain poorly understood and executed, Stanford Medicine targeted an effort to address
this implementation gap at the health system by addressing three key challenges:
developing a framework for designing integration of artificial intelligence (AI) into
complex health care work systems; identifying and building the teams of people,
technologies, and processes to successfully develop and implement AI-enabled systems;
and executing in a manner that is sustainable and scalable for the health care enterprise.
In this article, the authors describe two pilots of real-world implementations that integrate
AI into care delivery: one to improve advance care planning and the other to decrease
unplanned escalations of care. While these two implementations used different ML
models for different use cases, they shared a set of principles for integrating AI into care
delivery. The authors describe how these shared principles were applied to the health
system, the barriers and facilitators encountered, and how these experiences guided
processes for collaboratively designing and implementing user-centered AI-enabled
solutions.
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KEY TAKEAWAYS

» Artificial intelligence (AI) is not the end product, but rather an enabling function in the form
of machine-learning (ML)–generated predictions that power a broader set of digital
applications, workflows, and human teams (i.e., an AI-enabled system).

» The AI-enabled system must be designed and implemented in a manner that is user centered
and driven by pragmatic needs and challenges. The full impact of AI on work systems may
emerge via second- or third-order effects that can only be observed once it is implemented in
the real-world setting.

» We observed AI playing an important role in aligning care teams around new collaborative
workflows that previously did not exist. The role of AI was not necessarily to provide new
information or to replace clinical decision-making, but to function as a dispassionate mediator
of risk, which mitigated disagreements among team members and empowered nonphysician
care team members to drive elements of patient care, such as advance care planning and
care escalation due to clinical deterioration.

» A cross-functional team centered around the development and implementation of the AI
system is needed, and it must have expertise not just in ML and data science, but also in
clinical informatics, quality improvement, design thinking, enterprise analytics, software and
IT applications, and clinical operations.

The Challenge

Despite broad interest in and the promise of artificial intelligence (AI) in health care, there
remains a lack of understanding of how AI can meaningfully improve care in complex health
care environments. While there has been significant progress in developing machine-learning
(ML) models for generating predictions that underlie the intelligence that comes with AI, the
manner in which this intelligence can be incorporated into health care delivery is still poorly
understood and demonstrated.1,2

We classify this implementation gap at our health system into three categories of challenges: (1)
developing a framework for designing integration of AI into complex health care work systems,3

(2) identifying and building the teams of people, technologies, and processes to successfully
develop and implement AI-enabled systems, and (3) executing in a manner that is sustainable
and scalable for the health care enterprise.

We describe the application of a shared set of principles for using AI to guide care in two
real-world implementations at an academic medical center: one to improve advance care
planning (ACP) and the other to decrease unplanned escalations of care for clinically
deteriorating patients in the hospital. From these two implementations, we observed an
emergent characteristic of how AI was able to mediate improvement, which was to enable new
team-based workflows for patient-centered care through empowering nonphysician clinical
support services.
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The Goal

We sought to demonstrate an approach to using AI in health care that could be operationalized
and applied to real-world implementations. A key principle was to view AI not as the solution,
but as an enabling function of a broader work system consisting of digital applications,
workflows, and human teams.

This approach was applied in two different improvement opportunities at our institution:

1. ACP: conversations that elucidate a patient’s values and goals in the course of treating a
serious illness are infrequently conducted in the hospital setting. This may lead to care that
is not concordant with the patient’s goals. The inpatient setting was identified as an
opportunity for improving rates of ACP for hospitalized patients.

2. Appropriate care escalation: delayed identification and care of clinically deteriorating
hospitalized patients, leading to rapid response teams (RRTs), code events, and unplanned
escalations to the ICU that can affect patient morbidity and mortality.

The Execution

Both implementations followed the principle of “designing and building the best possible system
for the given improvement opportunity using ML capabilities” rather than “implementing a given
ML model.” We define a model as a function learned from data that map a vector of predictors to
a real-valued outcome. Predictors are also referred to as inputs, features, or variables; the outcome is
also referred to as output, label, or task. The following questions guided our execution:

1.What are the improvement goals, metrics, current-state processes, pain points, root causes,
and key drivers for improvement?

2.What features of workflows and digital tools would address these key drivers? Which of
these can be enabled by AI?

3.What parameters of the ML model (e.g., prediction task, predictive accuracy, and
classification threshold) would be required to generate the intelligence that enables these
key drivers?

4. How do we select the appropriate ML models that meet these requirements? Do we buy,
build, or codevelop? How do we validate and customize the ML models for our
improvement needs?

5. How do we design, build, iterate, and implement AI-enabled workflows and applications in
a manner that is user centered and problem driven, adaptive to the complexity of the health
care environment, and scalable and sustainable for the enterprise?

6. How do we evaluate and scale these implementations?

NEJM CATALYST INNOVATIONS IN CARE DELIVERY 3

NEJM Catalyst is produced by NEJM Group, a division of the Massachusetts Medical Society.
Downloaded from catalyst.nejm.org by Mary Jane Medas on June 14, 2023. For personal use only.
 No other uses without permission. Copyright © 2022 Massachusetts Medical Society. All rights reserved. 

https://ai.nejm.org/


Back to Table of Contents

54 AI & Machine Learning in Medicine ai.nejm.org

“ A key principle was to view AI not as the solution, but as an
enabling function of a broader work system consisting of digital
applications, workflows, and human teams.”

1. Assessment of the Improvement Opportunity

Both implementations yielded a key insight into how AI can mediate improvement for complex
health care settings: by providing an objective benchmark that the entire care team can align
around, even if they disagreed with the prediction. This alignment opened an opportunity for
physicians and nonphysicians to arrive at a shared mental model of risk that enabled
coordination and empowerment of nonphysician team members to take necessary actions.

We arrived at this insight by first trying to understand the problem without any predefined
notions of how AI was to be used (or even that AI was needed for the solution). We also used
methods from quality improvement to identify concrete improvement goals (increase rates of
ACP documentation and decrease rates of unexpected escalations of care from clinical
deterioration) and two key drivers that could be enabled by AI.

Key Driver #1: Consistent, Objective Assessment and Communication of Risk

ML models that run continuously and generate risk predictions from patient data in the
electronic health record (EHR) can offer an advantage over manual clinician assessments.4 In
both implementations, ML models enabled this key driver by providing consistency and
objectivity to the assessment of appropriateness of ACP and need for care escalation.

Key Driver #2: Shared Mental Model of Risk Between Physician and Nonphysician Members
of the Care Team

AI can facilitate alignment and coordination by acting as an objective assessor of risk. Patient care
in a hospital, while supervised by the attending physician, is highly multidisciplinary, and patients
interact with a variety of nonphysician clinical support services, such as nursing, rehabilitation
services (physical and occupational therapy), social work, and nutrition. One root cause of process
breakdowns for both projects, before implementation, was misalignment of risk perception and
lack of coordination between physicians and nonphysician team members in performing needed
clinical interventions. We found from stakeholder interviews that in times of disagreement,
nonphysician team members frequently did not feel empowered to take action, which may have
led to missed opportunities for ACP and early action for clinically deteriorating patients.

2. Conception of the AI-Enabled System

For each implementation of the AI enabled system, we designed a set of digital applications and
workflows guided by these two key drivers of achieving consistent, objective assessment of risk
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and a shared mental model across the care team. The following is a set of common features for
both AI-enabled systems:

1. A clinical decision support (CDS) system in the EHR supported by ML model predictions
that delivers the same information to both physicians and nonphysician members of the
patient care team.

2. A standard, structured workflow that empowers nonphysician care team members to initiate
action (within their scope of professional practice) guided by the AI-based CDS system.

3. A shared documentation tool in the EHR linked to the CDS system for each member of the
care team to document completion of the workflow (and see each other’s documentation).

These features were meant to disrupt the hierarchical, physician-driven workflows that existed
for both ACP and care escalation for clinical deterioration and replace them with a more
democratized and collaborative system that better leveraged the skills and resources of
nonphysician clinical support services (Figure 1).

3. Development and Validation of the ML Models

The above design conceptions guided our selection and refinement of the ML models for each
AI-enabled system. Both implementations required our team to think through the following
questions:

1.What are the ML model prediction tasks that can enable the previously identified key
drivers and system design?

2.What are the runtime requirements of the ML model (e.g., how frequently do predictions
need to be generated at deployment)?

3.What is the validation strategy that can best reflect ML model performance for the local
implementation setting? How do we select the cohort and outcomes used for the validation?

4. How do we select the appropriate classification thresholds for the ML model that can best
meet the needs of the system?

“ We found from stakeholder interviews that in times of
disagreement, nonphysician team members frequently did not feel
empowered to take action, which may have led to missed
opportunities for ACP and early action for clinically deteriorating
patients.”
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FIGURE 1

Conceptualization of New Collaborative Workflows Enabled by
Artificial Intelligence (AI)
For both advance care planning and care escalation, traditional hierarchical workflows (A) involved
physicians generating insights and decisions that were then passed down to the rest of the care team
and the patient. We envisioned an AI-enabled system (B) in which machine learning (ML)–generated
predictions can empower and guide each member of the care team to initiate and carry out decisions
in a more democratized and collaborative manner while removing the bottleneck at the level of the
physician.
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Implementation #1: Increase Rates of ACP

We aligned on 12-month mortality risk for hospitalized patients as the ML prediction task.
Predictions would need to be generated every 24 hours for all admitted patients because the
clinical status (and appropriateness of ACP) of hospitalized patients can change over time. We
selected a 12-month mortality risk prediction model developed previously by our team that had
been validated as an appropriate surrogate for identifying hospitalized patients with serious
illness who would benefit from ACP.5

The classification threshold was selected so that the model flagged patients in the top 25th
percentile of predicted 12-month mortality risk in a cohort of patients discharged from the
inpatient general medicine patients at our institution, which reflected the patient population for
this implementation. At this threshold, in a larger validation cohort of 5,965 patients who were
admitted to our institution, the positive predictive value was 60% (i.e., 60% of patients flagged
by the ML model did in fact die within 12 months in the validation cohort). Finally, we estimated
the increase in the amount of work in terms of the number of additional patients who would
need ACP. In addition, a simulation study was conducted to quantify the achievable net benefit,
given that work capacity constraints, as well as patient preferences, often limit follow-up with
every flagged case.6,7

Implementation #2: Decrease Unplanned Escalation of Care for Clinical Deterioration

To align the care team on the appropriate early interventions, we determined that the ML model
needed to identify patients with a high probability of a future clinical deterioration event (e.g.,
unplanned ICU transfer, RRT, or code), and the predictions would have to be performed early
enough to allow for enough time for the care team to respond.8,9 Predictions would also need to
be updated in the EHR to reflect the frequent changes in the patients’ clinical status, which
enables the first key driver of providing a continuous assessment of risk.

We selected the Deterioration Index (DI), a model available through our EHR vendor, Epic
Systems, because of the relative ease of technical integration while meeting most of these
requirements. The DI is a logistic regression that is capable of updating predictions on
hospitalized patients every 15 minutes using the most recent available clinical data on 31
physiological measures captured in the EHR; the DI tool also shows users the relative
contributions of each physiological measure in generating the prediction. This last feature offers
the additional benefit of providing a degree of model explainability, which can be useful for
helping clinical users align around a shared mental model of risk.10

We then performed site-specific validation of the DI on a data set that we derived from a cohort of
6,232 non-ICU patient hospital encounters at our institution using a modified outcome definition
that more closely reflected our product requirements: a composite outcome of RRT, code, or ICU
transfer within 6 to 18 hours of the prediction.11 This validation strategy was modified from that of
the vendor, which reported model accuracy in predicting the outcomes without the 6- to 18-hour
time lag; this was thought to not be clinically meaningful because a model predicting an event
within 6 hours of the event would not provide sufficient time for a clinical response.
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The area under the receiver operating characteristic (AUROC) (which is a performance metric for
assessing ML models, in which 0.5 is the worst score and means the model is no better than
random chance, and 1.0 is the best) calculated from our validation including these modified
definitions was 0.71, which was lower than that reported by the vendor. Given this limited model
discrimination and to simplify the model output so that it could be more easily interpreted by the
care team, we chose a binary classification threshold (high risk vs. not high risk), which was
selected at a cutoff that maximized precision and recall, both of which were 20%. We then
validated with a focus group of clinicians that this level of accuracy would indeed be useful (i.e.,
most agreed they would want to be alerted if their patient had a “1 in 5 chance of experiencing an
RRT or ICU transfer within the next 6–18 hours” while acknowledging that “four out of five
patients who experience clinical deterioration would not be captured by the model”). While the
low recall at this threshold (20%) would not make the DI an appropriate comprehensive screening
tool for deterioration that would replace existing human-driven screening processes, there was
consensus that, at a precision of 20%, it would still be useful to help align mental models and
drive the desired physician–nurse team workflows for the patients whom the model does flag.

4. Design and Development of AI-Enabled Digital Applications and Workflows

Both implementations included digital applications embedded in the EHR that incorporated ML
predictions and enabled shared workflows between physician and nonphysician team members.
The EHR applications and workflows were created with two design aims in mind: (1)
transparently communicate and align risk across the care team, and (2) promote consistency and
collaboration toward patient care.

Communicate and Align Risk Across the Care Team

The following key product features were shared across the two implementations:

� ML predictions had to be translated and displayed into usable information that is simple and
avoids confusion that could lead to unintended consequences.

� Information had to be integrated into the clinicians’ standard work in the EHR.

� Information had to be displayed transparently to all care team members to facilitate a shared
mental model and collaborative work across the care team.

“ While the low recall at this threshold (20%) would not make the DI
an appropriate comprehensive screening tool for deterioration that
would replace existing human-driven screening processes, there was
consensus that, at a precision of 20%, it would still be useful to
help align mental models and drive the desired physician–nurse
team workflows for the patients whom the model does flag.”
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� Information had to be displayed transparently to all care team members to facilitate a shared
mental model and collaborative work across the care team.

“ While the low recall at this threshold (20%) would not make the DI
an appropriate comprehensive screening tool for deterioration that
would replace existing human-driven screening processes, there was
consensus that, at a precision of 20%, it would still be useful to
help align mental models and drive the desired physician–nurse
team workflows for the patients whom the model does flag.”
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On the basis of these requirements, we developed a shared application design that was used by
both implementations: a dedicated column that can be incorporated into EHR patient lists, which
are used by both physician and nonphysician care team members as part of standard work. Within
the column, patients identified as high risk by the ML are flagged (Figure 2). We decided that it
was simpler and more useful for the care team to only see this binary classification result (high
risk vs. not high risk) rather than individual numerical model predictions, given that neither model
was optimized for calibration and that insight into individual predicted risk values was not
necessary for alignment of mental models and workflow.

Because clinical deterioration and care escalation are more acute issues than ACP, we built
additional alerting mechanisms in the form of best practice alerts in the EHR, as well as
interruptive alerts to provider mobile devices for select instances (i.e., those cases in which the
system flags the patient as high risk for the first time in the past 24 hours) (Figure 3).

Promote Consistency and Collaboration for Care Delivery

For this second design aim, both implementations shared the following key features:

� Structured workflow shared across the care team for patients flagged by the ML models

� Documentation tools in the EHR that promoted structure, collaboration, and transparency
across the care team

We discovered that structure was important for aligning care teams around a collaborative
clinical response for flagged patients. A key barrier to the adoption of AI systems in health care
that we also observed in our implementation is that clinicians disagree with the ML predictions
or believe that the AI system is not telling them anything that they do not already know. In our
implementations, the emphasis was less on whether or not the ML predictions were correct;
rather, it was that for any given patient flagged by the ML model, physician and nonphysician
care team members had to carry out a structured collaborative workflow to build a shared
mental model of risk and a collaborative clinical response regardless of whether there is agreement
with the ML prediction. The role of the AI system was not necessarily to provide new information
or to replace clinical decision-making, but to function as a dispassionate mediator for facilitating
physician and nonphysician collaboration to assess the care plan in light of the new
ML-generated information.

To promote consistency in this collaboration, we created the following structured workflows for
each implementation.

Shared Completion of ACP by Physician and Nonphysician Care Team Members

For patients flagged by the 12-month mortality prediction model, the care team (starting with
physicians and occupational therapists and with plans to expand to social worker and clinical
nutrition) is asked to conduct ACP using the Serious Illness Conversation Guide (SICG), a
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FIGURE 2

Electronic Health Record (EHR) Designs for Communicating
Machine-Learning Model Predictions
A patient list column in the EHR was created for each implementation that could be added by both
physicians and nonphysician team members to their daily patient lists. Flags were displayed and
messages provided when recommended by the machine-learning models. For advance care planning
(A), the message was a simple prompt to document advance care planning. For additional evaluation
for care escalation (B), the Deterioration Index also included a feature that shows the relative statistical
contributions of each variable to the prediction, which provided a particularly helpful context within
which clinicians could determine if the model predictions “made sense” (i.e., if the prediction was way
off from their clinical judgment, then they could check to see if any of the variables perhaps were
derived from either incorrect or outdated data in the EHR). RRT 5 rapid response team.

Source: The authors. # 2022 Epic Systems Corporation.

NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society
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standardized template for ACP using patient-tested language developed by Ariadne Labs
(Figure 4).12,13

The SICG provides a consistent approach toward ACP that also allows for distributing ownership
of different components of the ACP conversation across care team members. In our
implementation, the physician is expected to conduct the prognosis component of the
conversation, while occupational therapy and nutrition may explore critical abilities that are
important near the end of life. Care team members participating in this workflow all underwent
training in how to use the SICG.

“ The role of the AI system was not necessarily to provide new
information or to replace clinical decision-making, but to function
as a dispassionate mediator for facilitating physician and
nonphysician collaboration to assess the care plan in light of the
new ML-generated information.”

Completion of a Structured Group Huddle for Patients at Risk of Unplanned Care Escalation

The physician and nurse caring for a patient flagged by the ML model were expected to
complete a structured huddle — referred to as the clinical deterioration huddle — to
collaboratively discuss potential reasons for clinical deterioration and next steps (Table 1).

FIGURE 3

Artificial Intelligence–Generated Alerts Sent to Care Teams
A noninterruptive alert is shown on the homepage of the patient’s chart if a patient is identified as high
risk for clinical deterioration. Additionally, an interruptive alarm is sent to the clinician’s phone via the
clinical communication mobile application used for patient care (Voalte) for patients who are newly
identified as high risk within the previous 24 hours (not shown). RRT 5 rapid response team, SBAR 5

Situation, Background, Assessment, Recommendation.

Source: The authors. # 2022 Epic Systems Corporation.

NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society
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standardized template for ACP using patient-tested language developed by Ariadne Labs
(Figure 4).12,13

The SICG provides a consistent approach toward ACP that also allows for distributing ownership
of different components of the ACP conversation across care team members. In our
implementation, the physician is expected to conduct the prognosis component of the
conversation, while occupational therapy and nutrition may explore critical abilities that are
important near the end of life. Care team members participating in this workflow all underwent
training in how to use the SICG.

“ The role of the AI system was not necessarily to provide new
information or to replace clinical decision-making, but to function
as a dispassionate mediator for facilitating physician and
nonphysician collaboration to assess the care plan in light of the
new ML-generated information.”

Completion of a Structured Group Huddle for Patients at Risk of Unplanned Care Escalation

The physician and nurse caring for a patient flagged by the ML model were expected to
complete a structured huddle — referred to as the clinical deterioration huddle — to
collaboratively discuss potential reasons for clinical deterioration and next steps (Table 1).

FIGURE 3

Artificial Intelligence–Generated Alerts Sent to Care Teams
A noninterruptive alert is shown on the homepage of the patient’s chart if a patient is identified as high
risk for clinical deterioration. Additionally, an interruptive alarm is sent to the clinician’s phone via the
clinical communication mobile application used for patient care (Voalte) for patients who are newly
identified as high risk within the previous 24 hours (not shown). RRT 5 rapid response team, SBAR 5

Situation, Background, Assessment, Recommendation.

Source: The authors. # 2022 Epic Systems Corporation.

NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society
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FIGURE 4

The Serious Illness Conversation Guide
The Serious Illness Conversation Guide is a validated template for advance care planning using
patient-tested language developed by Ariadne Labs. The Serious Illness Care Program at Stanford
Medicine adopted this tool for use by care teams.

Source: Ariadne Labs, https://www.ariadnelabs.org/serious-illness-care/

NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society
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The shared checklist format is meant to facilitate consistent incorporation of both physician and
nursing perspectives, which we identified as a key driver for improvement.

Integration of AI-Enabled Collaborative Workflows into the EHR

Execution and adherence to these workflows were challenges in both implementations.
Clinicians are busy, and their attention is spread out over many complex tasks when caring for
patients, so bandwidth for accommodating any new initiative is limited. To address this
challenge, we built shared documentation tools in the EHR that incorporated the structure of
each AI-enabled workflow and promoted transparency and accountability by each care team
member. These tools were all easily accessible by clicking on the patient list flag and alerts
generated by the AI system in the EHR.

For the clinical deterioration implementation, tools were incorporated into the EHR to prompt
and document the deterioration huddle (Figure 5).

For ACP, the SICG was built into a structured form that allowed care team members to
collaboratively conduct ACP and document different sections of the SICG and also for other
providers to look back and reference the ACP conversations that have taken place for a patient
(Figure 6).

5. Implementation and Testing of Applications and Workflows

Both implementations were initiated and tested on pilot patient care units (the ACP project
started in July 2020 and the clinical deterioration project started in January 2021) and
followed a Plan, Do, Study, Act (PDSA) cycle framework from quality improvement.14,15 Rapid
iteration and testing with deep stakeholder engagement were critical to understanding the
barriers and facilitators to implementation. Many design decisions were made after several
PDSA cycles that could have surfaced only after real-world experiences and feedback from
end users.

Table 1. SBAR Clinical Deterioration Huddle

Situation Patient at high risk of clinical deterioration

Background,
Assessment

Discuss nursing concerns (primary nurse) and likely reason(s)
for clinical deterioration (provider team)

Recommendation Discuss response to risk of clinical deterioration
� Assess aspiration risk
� Transfer to high level of care
� New orders
� Goals-of-care discussion
� Family meeting
� New consult
� ICU provider team consult
� Critical care response nurse consult
� Other (comment)

Physicians and nurses were expected to complete a structured huddle for flagged patients using the Situation, Background, Assessment,
Recommendation (SBAR) format. Source: The authors
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FIGURE 4

The Serious Illness Conversation Guide
The Serious Illness Conversation Guide is a validated template for advance care planning using
patient-tested language developed by Ariadne Labs. The Serious Illness Care Program at Stanford
Medicine adopted this tool for use by care teams.

Source: Ariadne Labs, https://www.ariadnelabs.org/serious-illness-care/
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The shared checklist format is meant to facilitate consistent incorporation of both physician and
nursing perspectives, which we identified as a key driver for improvement.

Integration of AI-Enabled Collaborative Workflows into the EHR

Execution and adherence to these workflows were challenges in both implementations.
Clinicians are busy, and their attention is spread out over many complex tasks when caring for
patients, so bandwidth for accommodating any new initiative is limited. To address this
challenge, we built shared documentation tools in the EHR that incorporated the structure of
each AI-enabled workflow and promoted transparency and accountability by each care team
member. These tools were all easily accessible by clicking on the patient list flag and alerts
generated by the AI system in the EHR.

For the clinical deterioration implementation, tools were incorporated into the EHR to prompt
and document the deterioration huddle (Figure 5).

For ACP, the SICG was built into a structured form that allowed care team members to
collaboratively conduct ACP and document different sections of the SICG and also for other
providers to look back and reference the ACP conversations that have taken place for a patient
(Figure 6).

5. Implementation and Testing of Applications and Workflows

Both implementations were initiated and tested on pilot patient care units (the ACP project
started in July 2020 and the clinical deterioration project started in January 2021) and
followed a Plan, Do, Study, Act (PDSA) cycle framework from quality improvement.14,15 Rapid
iteration and testing with deep stakeholder engagement were critical to understanding the
barriers and facilitators to implementation. Many design decisions were made after several
PDSA cycles that could have surfaced only after real-world experiences and feedback from
end users.

Table 1. SBAR Clinical Deterioration Huddle

Situation Patient at high risk of clinical deterioration

Background,
Assessment

Discuss nursing concerns (primary nurse) and likely reason(s)
for clinical deterioration (provider team)

Recommendation Discuss response to risk of clinical deterioration
� Assess aspiration risk
� Transfer to high level of care
� New orders
� Goals-of-care discussion
� Family meeting
� New consult
� ICU provider team consult
� Critical care response nurse consult
� Other (comment)

Physicians and nurses were expected to complete a structured huddle for flagged patients using the Situation, Background, Assessment,
Recommendation (SBAR) format. Source: The authors
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“ Both implementations have yielded early promising results during
the initial pilot phases, as measured by the documented workflow
completion rate and interviews with workflow participants.”

For example, for ACP, we initially designed a more coordinated workflow between physicians
and nonphysician care team members for flagged patients that included a huddle prior to
initiating sections of the SICG. However, on the basis of user feedback regarding bandwidth
constraints and the nonacute nature of the ACP relative to other inpatient patient care needs, we
instead elected to use a workflow in which any care team member can initiate a section of the
SICG for flagged patients (as long as it is within their scope of practice; only physicians were to

FIGURE 5

Collaborative Electronic Health Record (EHR) Documentation Tool for
the Clinical Deterioration Huddle
Physicians and nurses complete a checklist for the structured huddle that is embedded into the EHR
alert (A). Physician and nursing contributions to the documented huddle are then shown in a report in
the patient’s chart (B). RRT 5 rapid response team.

Source: The authors. # 2022 Epic Systems Corporation.

NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society
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FIGURE 6

Collaborative Electronic Health Record (EHR) Documentation Tool for
Advance Care Planning
The Serious Illness Conversation Guide was embedded into the EHR as a shared documentation
template that can be accessed by double-clicking on the patient list flag. Both physicians and
nonphysician care team members can access and edit this documentation template.

Source: The authors. # 2022 Epic Systems Corporation.

NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society
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discuss the prognosis section); team members would then send a for-your-information message
to the rest of the team once completed. The AI-generated patient list flag was crucial in
facilitating the needed level of alignment for an otherwise decentralized workflow.

6. Integration and Scale into the Health System

As of January 2022, both implementations were nearing the end of their pilot phases, with plans
for integration and scale guided by these principles:

Clinical Integration: Ensure that both of the pilot AI-enabled products are sufficiently
incorporated into the standard clinical workflows for the care teams to facilitate uptake, beyond
just early adopters.

Operational Integration: Connect both implementations to operational units within our
institution that are accountable for the metrics and operational goals that these implementations
enable.

Technical Integration: Utilize technical infrastructure that can sustainably support the back
and front ends of these AI-enabled products at the enterprise level and create a system for
monitoring, versioning, and even deimplementing if appropriate.

Metrics

The ACP pilot was implemented for all patients admitted to the general medicine inpatient
service, which thus far has included 11,881 total patient hospital encounters since the beginning
of the implementation (July 2020) to January 2022 (average of 625 encounters per month), with
2,627 patient encounters flagged by the ML model as candidates for ACP (138 per month; 22% of
total encounters).

The clinical deterioration pilot was implemented in a stepwise fashion across two different
nursing units for general medicine patients, which thus far has included 3,022 total patient
encounters since the beginning of the implementation (January 2021) to January 2022 (average of
252 encounters per month), with 313 total patient encounters experiencing at least one flag
generated by the DI (average of 21 flags per month; 10.3% of total encounters).

Both implementations have yielded early promising results during the initial pilot phases, as
measured by the documented workflow completion rate (Figure 7) and interviews with workflow
participants. Target completion rates (number of documented completed workflows/number of
flagged encounters) were established for each implementation on the basis of our assessment of
clinical appropriateness, estimated number of flagged encounters, time needed to complete each
workflow, and capacity of the clinical teams. For ACP, we established a target of 10%, given the
higher number of expected flagged encounters, the amount of time needed to complete ACP
conversations, and the relatively lower urgency of the intervention for an inpatient encounter.
Conversely, we set a higher target (50%) for the clinical deterioration implementation because
there are fewer expected flagged encounters, and it was more urgent clinically to complete a
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discuss the prognosis section); team members would then send a for-your-information message
to the rest of the team once completed. The AI-generated patient list flag was crucial in
facilitating the needed level of alignment for an otherwise decentralized workflow.

6. Integration and Scale into the Health System

As of January 2022, both implementations were nearing the end of their pilot phases, with plans
for integration and scale guided by these principles:

Clinical Integration: Ensure that both of the pilot AI-enabled products are sufficiently
incorporated into the standard clinical workflows for the care teams to facilitate uptake, beyond
just early adopters.

Operational Integration: Connect both implementations to operational units within our
institution that are accountable for the metrics and operational goals that these implementations
enable.

Technical Integration: Utilize technical infrastructure that can sustainably support the back
and front ends of these AI-enabled products at the enterprise level and create a system for
monitoring, versioning, and even deimplementing if appropriate.

Metrics

The ACP pilot was implemented for all patients admitted to the general medicine inpatient
service, which thus far has included 11,881 total patient hospital encounters since the beginning
of the implementation (July 2020) to January 2022 (average of 625 encounters per month), with
2,627 patient encounters flagged by the ML model as candidates for ACP (138 per month; 22% of
total encounters).

The clinical deterioration pilot was implemented in a stepwise fashion across two different
nursing units for general medicine patients, which thus far has included 3,022 total patient
encounters since the beginning of the implementation (January 2021) to January 2022 (average of
252 encounters per month), with 313 total patient encounters experiencing at least one flag
generated by the DI (average of 21 flags per month; 10.3% of total encounters).

Both implementations have yielded early promising results during the initial pilot phases, as
measured by the documented workflow completion rate (Figure 7) and interviews with workflow
participants. Target completion rates (number of documented completed workflows/number of
flagged encounters) were established for each implementation on the basis of our assessment of
clinical appropriateness, estimated number of flagged encounters, time needed to complete each
workflow, and capacity of the clinical teams. For ACP, we established a target of 10%, given the
higher number of expected flagged encounters, the amount of time needed to complete ACP
conversations, and the relatively lower urgency of the intervention for an inpatient encounter.
Conversely, we set a higher target (50%) for the clinical deterioration implementation because
there are fewer expected flagged encounters, and it was more urgent clinically to complete a
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FIGURE 7

Workflow Component Completion Rate
Completion rate of documented advance care planning conversations for patients flagged by the
12-month mortality model is shown in A, and completion rate of documented clinical deterioration
huddles is shown in B. Both implementations sustained their target completion rates of 10% and 50%,
respectively. There was variability over time due to factors such as varying degrees of work capacity
among clinicians and staff and how often the clinical teams deemed the interventions appropriate for
the flagged patients. Notably, in the seventh month of the pilot, completion rates for the clinical
deterioration huddle increased after an upgrade in the electronic health record documentation tool
that improved ease of documentation in July 2021. Note: month 0 for A is July 2020 and for B is
January 2021.

A. Completion rate of ACP for flagged patients

B. Completion rate of clinical deterioration huddle for flagged patients
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huddle for deteriorating patients; nevertheless, given the precision of 20% (meaning four out of
five flagged patients in the validation cohort did not end up needing escalation to the ICU or
experienced an RRT or code), we chose not to target 100% workflow completion, because there
inevitably will be flagged encounters that clinical teams appropriately decide would not need the
full workflow. One limitation to this metric of documented workflow completion rate is that it likely
underestimates the true rate of workflow completion, because not all completed ACP
conversations and clinical deterioration huddles were documented correctly by the clinical teams.

“ We encountered a number of challenges associated with the
implementations, including matters related to time and resources,
translating ML predictions into accessible and actionable
information, and securing clinician buy-in for the effort.
Ultimately, the core of each of these hurdles is rooted in the need to
establish trust and confidence in the value of the ML integration.”

We observed sustained participation from nonphysician care team members for both
implementations; of the patient encounters with completed workflows, 100% of completed
clinical deterioration huddles included contribution from a nurse, and 42% of completed ACP
conversations included contribution from a care team member who was not a physician. In
interviews for feedback, many nonphysician members reported that they felt more empowered
to leverage their skills to advocate and care for their patients in ways that were not possible
before. For example, occupational therapists — who previously were typically not part of ACP
conversations (although they had expressed the desire to be so) — reported that they often were
able to offer unique perspectives around patient functional goals in the new AI-enabled
workflow. One occupational therapist expressed:

“I loved having the [SICG] conversation with a patient today because it really gave me a good
understanding of who the patient is as a human being. It was so interesting to see how each person has
similar but unique priorities in regard to their medical care and functional goals. The conversation
gives us a unique perspective to plan care based on what is important to the patient.”

Nurses have also expressed strong interest in and satisfaction with the AI-enabled clinical
deterioration workflow. In a survey of nursing staff from the first of the two pilot nursing units
(52 nurses, 30 responded; 57%) on which this implementation was deployed, 96.5% reported that
they felt the workflow was adding value to patient care. Additionally, 89.6% indicated that the
tool changes the way they care for their patients: charge nurses in the survey reported
alternating patient assignments or ratios in anticipation of clinical changes with the flagging
patient, and bedside nurses reported they rounded more frequently and/or completed a more
in-depth patient assessment on their patients who were flagging.

While nurses have consistently documented completion of the huddles, physician documentation
adherence has been minimal. However, survey results shed more light on physician participation
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huddle for deteriorating patients; nevertheless, given the precision of 20% (meaning four out of
five flagged patients in the validation cohort did not end up needing escalation to the ICU or
experienced an RRT or code), we chose not to target 100% workflow completion, because there
inevitably will be flagged encounters that clinical teams appropriately decide would not need the
full workflow. One limitation to this metric of documented workflow completion rate is that it likely
underestimates the true rate of workflow completion, because not all completed ACP
conversations and clinical deterioration huddles were documented correctly by the clinical teams.

“ We encountered a number of challenges associated with the
implementations, including matters related to time and resources,
translating ML predictions into accessible and actionable
information, and securing clinician buy-in for the effort.
Ultimately, the core of each of these hurdles is rooted in the need to
establish trust and confidence in the value of the ML integration.”

We observed sustained participation from nonphysician care team members for both
implementations; of the patient encounters with completed workflows, 100% of completed
clinical deterioration huddles included contribution from a nurse, and 42% of completed ACP
conversations included contribution from a care team member who was not a physician. In
interviews for feedback, many nonphysician members reported that they felt more empowered
to leverage their skills to advocate and care for their patients in ways that were not possible
before. For example, occupational therapists — who previously were typically not part of ACP
conversations (although they had expressed the desire to be so) — reported that they often were
able to offer unique perspectives around patient functional goals in the new AI-enabled
workflow. One occupational therapist expressed:

“I loved having the [SICG] conversation with a patient today because it really gave me a good
understanding of who the patient is as a human being. It was so interesting to see how each person has
similar but unique priorities in regard to their medical care and functional goals. The conversation
gives us a unique perspective to plan care based on what is important to the patient.”

Nurses have also expressed strong interest in and satisfaction with the AI-enabled clinical
deterioration workflow. In a survey of nursing staff from the first of the two pilot nursing units
(52 nurses, 30 responded; 57%) on which this implementation was deployed, 96.5% reported that
they felt the workflow was adding value to patient care. Additionally, 89.6% indicated that the
tool changes the way they care for their patients: charge nurses in the survey reported
alternating patient assignments or ratios in anticipation of clinical changes with the flagging
patient, and bedside nurses reported they rounded more frequently and/or completed a more
in-depth patient assessment on their patients who were flagging.

While nurses have consistently documented completion of the huddles, physician documentation
adherence has been minimal. However, survey results shed more light on physician participation
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and remaining challenges. In a survey among 19 medicine residents participating in the pilot, of
whom 17 had at least one patient flagged by the clinical deterioration model, 50% indicated that
they take action on the alerts by calling the bedside nurse to huddle, messaging the bedside nurse,
or going to the bedside to huddle with the nurse. In addition, 50% indicated that no personal
action is taken on the alert; however, 64% said that after receiving an alert, the bedside nurse also
reached out to them to discuss the patient’s status. When asked about challenges to workflow
adherence, 30% of physicians indicated that when they received the alert, they had recently
assessed the patient, and, therefore, further action seemed redundant. Providers additionally cited
overall workload burden (14%), and disagreement with the model’s assessment of risk (14%).
Most respondents (68%) reported that they feel either neutral or positive about the overall
usefulness of the intervention. These survey results are spurring important conversations and
informing key improvements to the overall intervention.

Both implementations will continue to be assessed prospectively with additional quantitative
and qualitative outcomes that reflect clinical effectiveness, impact on processes and teams, and
success of implementation using implementation science frameworks, such as RE-AIM16 (reach,
effectiveness, adoption, implementation, maintenance) once the pilots have reached a steady
state in adoption rate and changes to the workflow (Table 2). Given external factors, such as the
Covid-19 pandemic, that have led to multiple unforeseen changes and demands on resources
and staffing in the hospital, both of the pilots were extended for an additional 6–8 months to
accommodate more PDSA cycles. Examples of additional clinical, process, and implementation
metrics for both projects are listed in Table 2.

Hurdles

We encountered a number of challenges associated with the implementations, including matters
related to time and resources, translating ML predictions into accessible and actionable
information, and securing clinician buy-in for the effort. Ultimately, the core of each of these
hurdles is rooted in the need to establish trust and confidence in the value of the ML integration.

Managing Uncertainty Regarding the Value of the ML Component in the
Context of Competing Demands for Time and Resources Among Care Teams

Integrating novel workflows into health care is often challenging when there are competing
demands for time and resources, especially with the record surges in patient volume our
institution has experienced over the course of the implementation period (due to the Covid-19
pandemic and other factors). In particular, workflows involving AI can face a higher barrier to
acceptance, because the mechanism triggering the workflow (the ML model) will, by definition, be
wrong some percentage of the time (i.e., there is only a certain probability that the patient flagged
by the ML model is, indeed, appropriate for the workflow). Additionally, the timing of when these
workflows are triggered is critical to adoption and perceived usefulness. This degree of uncertainty
can be difficult to understand and accept by clinical teams, especially when other workflows
competing for their time and attention are presented with more certainty about expected patient
benefit (even if that level of certainty is likely false). For this reason, we designed the EHR
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application builds for both implementations to transparently present the level of statistical
uncertainty associated with each ML-generated prediction using user-centered, clinically oriented
language so that users can more easily contextualize the relevance of each ML-generated alert.

“ Implementation efforts will more likely be successful as an
improvement opportunity in need of an ML model rather than as
an ML model looking for an improvement opportunity.”

Translating the ML Model Predictions into Interpretable and Actionable
Information

Patient care teams need to continuously process large amounts of new information. If that
information is ambiguous or not clearly actionable, it is at risk of being misinterpreted, misused, or
not used at all. An important lesson we learned is that the ML prediction may not itself be necessarily
informative, yet it still plays the important role of aligning clinical teams around a standard set of
downstream actions that, on average for flagged patients, may lead to better outcomes. For example,
a common piece of feedback we received from clinicians, particularly physicians, for both the ACP
and the clinical deterioration implementation was that the model was “not telling [them] anything
that [they] don’t already know,” in the sense that they often were already aware that a patient either
would benefit from ACP or was at risk of deteriorating. However, despite this prior awareness,
physicians often did not actually perform the associated downstream tasks. Therefore, the true value

Table 2. Planned Clinical, Process, and Implementation Outcomes for the Two AI-Enabled Systems

Advance care planning Clinical deterioration

Clinical effectiveness and process: How
did the intervention impact clinical
outcomes and processes of care?

� Rates of referral to hospice, palliative
care specialists, changes in code status,
and hospital readmissions

� Frequency and quality of
communication and collaboration
between physicians and nonphysicians
related to patient goals of care

� Rates of overall inpatient mortality, ICU
transfers, mortality 24 hours after ICU
transfer, conversion of RRTs into codes
or ICU transfers

� Frequency and quality of
communication and collaboration
between physicians and nurses related
to clinical deterioration

Implementation: How well was the
intervention implemented?

� Reach: proportion of flagged patients
flagged by the ML model who received
ACP

� Adoption: proportion of eligible
physician and nonphysician providers
who participate in the workflow

� Implementation fidelity: completion of
documented ACP, stratified by provider
type and SICG section

� Reach: proportion of patients flagged
by the ML model for whom the clinical
teams performed a clinical deterioration
huddle

� Adoption: proportion of eligible
physician and nurses who participate in
the workflow

� Implementation fidelity: completion
of documented clinical deterioration
huddle, stratified by provider type and
components of the huddle

One particular area of focus will be to ascertain the potential impact of the AI system on the level of communication and collaboration
between physicians and nonphysician providers related to advance care planning (ACP) and clinical deterioration, which we hypothesize to
be a potential downstream effect of the implementations. AI 5 artificial intelligence, RRT 5 rapid response team, ML 5 machine learning,
SICG 5 Serious Illness Conversation Guide. Source: The authors
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of these AI systems was not necessarily to provide new information, but rather to align the physicians
with the rest of the care team around acting on an established workflow.

To incorporate this concept early in each implementation, we pivoted from showing only model
predictions to language that specifically outlines the appropriate interpretation and required
action. For example, for patients flagged by the DI, nurses (and physicians) received an alert that
concretely expressed the nature of the risk and next steps: “Clinical Deterioration Risk Alert —
[insert patient name] is predicted to be at high risk (greater than 20%) of requiring ICU transfer or an
RRT in the next 6–18 hours. Connect with the charge nurse and primary team as soon as possible and
complete required documentation.”

Building Clinician Trust and Buy-in for the Intervention

The teams employed three strategies to build trust in the models and buy-in for the workflow
designed in these implementations. First, site-specific quantitative model validation was conducted for
each model, and the results were shared with the clinical stakeholders during the participatory design
sessions. Second, clinicians were directly involved in a parallel qualitative model validation process in
which they indicated agreement or disagreement with the model predictions. Lastly, the team
summarized and shared intervention success stories from early in the pilots to demonstrate
patient-level benefit from the intervention. These stories included quotes from staff along with the
case details and how the model output informed a different course of action and a favorable outcome.

The Team

In each of the two implementations, a multidisciplinary team consisting of technical, operational,
and clinical stakeholders, along with project management and quality improvement support, was
convened. More specifically, both project teams included about 15 members: data scientists, clinical
informatics, enterprise analytics, nurse managers, frontline nurses, clinical nurse specialists,
physicians, project managers, quality improvement experts, and social science researchers. The ACP
project additionally included physical therapists, social workers, and dieticians. Engaging all levels of
the technical, operational, and clinical stack is a key facilitator of rapid and well-informed decision-
making across all phases of the development and implementation of AI-enabled solutions.

Where to Start

The key to starting an implementation project using AI is to pick the right problems to solve that
will deliver meaningful improvement for the institution and then build a cross-functional team
to develop and integrate the AI-enabled system. This is in contrast to starting with an ML model
and trying to figure out how to implement it without a clearly defined problem. Implementation
efforts will more likely be successful as an improvement opportunity in need of an ML model
rather than as an ML model looking for an improvement opportunity.

Our two implementations went through the following six steps (Table 3) that can be applied to
future opportunities.
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Table 3. Six Steps for Implementing an AI Workflow Initiative*

Phase Key components

Assessment of improvement opportunity � Define the problem statement, improvement targets, and
stakeholders

� Identify current state gaps and key drivers for improvement
that can be enabled by ML

Conceptualization of the AI-enabled system � Design the components of the newly imagined sociotechnical
system enabled by AI that addresses the key drivers

Development and validation of the ML models � Define appropriate ML prediction tasks
� Develop, select, and validate ML models on cohort that reflect
the local implementation setting

� Determine the appropriate classification thresholds that enable
the key drivers and satisfy the work capacity of the team

Design and development of applications and workflows � Design and build the user-facing digital applications and
workflows

Implementation and testing � Iterate and test the AI-enabled system using the PDSA cycle
� Prospectively evaluate pilot implementations

Integration and scale � Integrate and scale the AI-enabled system into the standard
work and processes of the institution

*AI 5 artificial intelligence, ML 5 machine learning, PDSA 5 Plan, Do, Study, Act. Source: The authors
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Abstract
BACKGROUND Artificial intelligence using computer-aided diagnosis (CADx) in real

time with images acquired during colonoscopy may help colonoscopists distinguish

between neoplastic polyps requiring removal and nonneoplastic polyps not requiring

removal. In this study, we tested whether CADx analyzed images helped in this

decision-making process.

METHODS We performed a multicenter clinical study comparing a novel CADx-system that

uses real-time ultra-magnifying polyp visualization during colonoscopy with standard visual

inspection of small (�5mm in diameter) polyps in the sigmoid colon and the rectum for optical

diagnosis of neoplastic histology. After committing to a diagnosis (i.e., neoplastic, uncertain,

or nonneoplastic), all imaged polyps were removed. The primary end point was sensitivity for

neoplastic polyps by CADx and visual inspection, compared with histopathology. Secondary

end points were specificity and colonoscopist confidence level in unaided optical diagnosis.

RESULTS We assessed 1289 individuals for eligibility at colonoscopy centers in Norway,

the United Kingdom, and Japan. We detected 892 eligible polyps in 518 patients and

included them in analyses: 359 were neoplastic and 533 were nonneoplastic. Sensitivity

for the diagnosis of neoplastic polyps with standard visual inspection was 88.4% (95%

confidence interval [CI], 84.3 to 91.5) compared with 90.4% (95% CI, 86.8 to 93.1) with

CADx (P50.33). Specificity was 83.1% (95% CI, 79.2 to 86.4) with standard visual inspec-

tion and 85.9% (95% CI, 82.3 to 88.8) with CADx. The proportion of polyp assessment

with high confidence was 74.2% (95% CI, 70.9 to 77.3) with standard visual inspection

versus 92.6% (95% CI, 90.6 to 94.3) with CADx.
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CONCLUSIONS Real-time polyp assessment with CADx did

not significantly increase the diagnostic sensitivity of neoplas-

tic polyps during a colonoscopy compared with optical evalua-

tion without CADx. (Funded by the Research Council of

Norway [Norges Forskningsråd], the Norwegian Cancer Soci-

ety [Kreftforeningen], and the Japan Society for the Promo-

tion of Science; UMIN number, UMIN000035213.)

Introduction

C olorectal cancer is the third most common can-
cer and the second leading cause of cancer
deaths worldwide.1 Removal of precancerous

polyps during colonoscopy is the cornerstone of colorectal
cancer screening. Most colorectal polyps are small
(�5 mm in diameter) and located in the sigmoid colon
and the rectum. Although most colorectal cancers develop
from polyps, many small polyps are not neoplastic and do
not have any malignant potential.2

With current standard colonoscopy equipment, many
endoscopists, especially those with less experience, cannot
reliably distinguish between neoplastic and nonneoplastic
polyps on visual inspection, a procedure known as “optical
diagnosis.”3,4 Therefore, the current standard of care is to
remove all polyps and submit them for histopathologic
diagnosis. Reliable real-time optical diagnosis of small pol-
yps during colonoscopy could enable targeted removal
only of polyps classified as neoplastic, while small, non-
neoplastic polyps could be left behind.5

In a recent single-center, proof-of-concept study of a novel
artificial intelligence (AI) system for computer-aided polyp
diagnosis (CADx), we achieved a reliable distinction
between small neoplastic and nonneoplastic polyps in the
distal colon and the rectum.6 The CADx system combines
colonoscopes with 520· magnification of polyp surfaces
during colonoscopy in real time, and it enables AI-derived
automated optical diagnosis of neoplastic and nonneoplas-
tic polyps in about 40 seconds. The automated diagnosis
is signaled to the colonoscopist by an acoustic and optical
alarm during each polyp assessment.6-8

The current multicenter clinical study was designed to
compare the clinical performance of AI CADx-based opti-
cal diagnosis in distinguishing neoplastic from nonneo-
plastic small polyps in the sigmoid colon and the rectum

during colonoscopy with standard visual inspection–based
optical diagnosis in routine clinical colonoscopy practice.

Methods

STUDY DESIGN AND OVERSIGHT

We performed a multicenter clinical study of AI CADx polyp
classification and visual inspection versus standard visual
inspection alone. Study procedures were performed at three
participating endoscopy centers: Baerum Hospital (Norway),
King’s College Hospital London (United Kingdom), and
Showa University Northern Yokohama Hospital (Japan).

The institutional review board (IRB) at each of the three
participating centers approved the conduct of the study.
The study protocol and statistical analysis plan are avail-
able with the full text of this article at evidence.nejm.org.
Patient consent was implemented at the three study sites
according to local IRB practice; In Norway, only partici-
pants enrolled in the national screening program pilot
were eligible for participation and written informed
patient consent was included in the consent of the screen-
ing program. In Japan, the IRB approved an opt-out con-
sent approach because of the low risk related to the study
intervention (standard treatment was performed for
all polyps detected). In London, all patients provided
informed consent.

All co-authors agreed on publishing the article and vouch
for the completeness and accuracy of the data and the
adherence to the protocol.

PATIENTS

Eligible patients were individuals 18 years of age or older
who were scheduled for colonoscopy for colorectal cancer
screening, polyp surveillance, or evaluation of clinical signs
or symptoms at the participating centers between May
2019 and May 2021. Exclusion criteria were inflammatory
bowel disease, polyposis syndrome (familial adenomatous
polyposis, serrated polyposis), history of or current chemo-
therapy or radiation for rectosigmoid tumors, inability to
undergo polypectomy (e.g., anticoagulants, comorbidities),
pregnancy, and referral for removal of polyps with known
histology.

All patients with small polyps (�5 mm in diameter) in the
sigmoid colon or the rectum (jointly called rectosigmoid
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colon) detected during colonoscopy were included in this
study. For patients with more than five eligible polyps, the
first five polyps were included and evaluated according to
the study interventions (described next).

COLONOSCOPY PROCEDURES

All colonoscopies were performed according to routine
standards at the participating centers, including preproce-
dure assessment, bowel preparation, sedation practices,
and postprocedure recovery and care.

The following information was assessed and was registered
in the study database immediately during and after each
procedure: indication for colonoscopy, quality of bowel
preparation assessed by the Boston Bowel Preparation Score
(a 9-point assessment scale for cleaning quality during colo-
noscopy, with higher numbers indicating better prepara-
tion)9; most proximal segment of the colon reached during
colonoscopy; insertion and withdrawal duration; and size,
shape, and location of all detected polyps. All detected pol-
yps were removed for histologic assessment for final diagno-
sis. By study design, study colonoscopists were nonexperts,
defined as having between 1 and 5 years of colonoscopy
experience or having independently performed between
200 and 1000 procedures before joining the study as an
endoscopist. This aspect of the study design was included
because we wanted to determine whether CADx improved
the performance of reasonably trained, but nonexpert,
endoscopists and thus shortened the learning curve in
endoscopy training so the study colonoscopists behaved like
experts. The study endoscopists were accredited for stan-
dard colonoscopy in the participating countries, but they did
not have additional training in optical polyp diagnosis before
the study. For the purpose of this study, study endoscopists
received training on handling the study colonoscopes and
devices and image interpretation. Novice endoscopists were
not included because they are unlikely to make optical diag-
noses independently from supervisors in clinical practice.

EQUIPMENT

The study centers were provided with high-resolution mag-
nification colonoscopes (CF-H290ECI; Olympus Corp.,
Tokyo, Japan). These appear to be standard instruments by
design, feel, and function, including narrow band imaging.
In addition, the study colonoscope featured a light micros-
copy system integrated into the distal tip of the colono-
scope. The extra feature provided 520-fold magnification
at a focusing depth of 35 lm, and a field of view of 570 ·
500 lm, for high-resolution magnified images on demand,

which the colonoscopist controlled with a hand-operated
lever.6 This feature enabled real-time, in vivo evaluation of
polyp microvascular morphology.

AI SYSTEM

The study centers were also provided with a real-time
polyp classification CADx device (EndoBRAIN; Cybernet
Systems Corp., Tokyo, Japan), connected to a standard
colonoscopy processor unit (EVIS LUCERA ELITE,
CV-290; Olympus Corp.). As noted earlier, the CADx sys-
tem provides an automated diagnosis of rectosigmoid pol-
yps by analyzing images obtained in the magnification
mode of the colonoscopes for detected polyps, as previ-
ously described.6-8

Briefly, the CADx algorithm comprises three steps. The first
is feature extraction, which is the analysis of textures charac-
terized by differences in contrast for polyp vessels and
lumens, quantified in 312 validated variables. Second is classi-
fication, which comprises support-vector machine classifica-
tion of polyps as nonneoplastic or neoplastic on the basis of
the 312 variables through machine learning. For the system
training and validation, more than 35,000 polyp images were
used which were collected from five Japanese endoscopy cen-
ters, as described previously.10 Finally, in the diagnostic out-
put step, the predicted diagnosis is displayed (Fig. 1) for the
colonoscopist as “neoplastic” or “nonneoplastic” with a con-
fidence probability for neoplasia (0 to 100%).

If the CADx diagnosis has a confidence probability of less
than 70%, the system flags it as “low confidence,” on the
basis of a previous preclinical study.10 If the quality of the
captured image is not appropriate for system diagnosis
(e.g., artifacts caused by mucus, low image quality), the
analysis is flagged as “not a good sample,” and no diagno-
sis is provided.

The nonneoplastic category comprises polyps with no neo-
plastic features, such as hyperplastic polyps, inflammatory
polyps, and juvenile polyps. The neoplastic category com-
prises polyps with neoplastic features, such as adenomas
and cancers.

POLYP HANDLING

For each detected polyp, four consecutive steps were
applied. Step 1 comprised the standard endoscopic assess-
ment. First, colonoscopists assessed the size, shape, and
appearance of each detected polyp 5 mm or less in diame-
ter in the rectosigmoid colon. Morphology was categorized
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according to the Paris classification.11 The endoscopists
then classified polyps as either neoplastic (adenoma) or
nonneoplastic (nonadenoma) using a binary scale (i.e., low
or high confidence level in a nonneoplastic diagnosis, fol-
lowing recommendations in current guidelines12-14). Once
the endoscopist registered their optical diagnosis, the
CADx predicted classification was reported immediately
for each polyp and registered in the study database.

Step 2 was the CADx assessment. After the standard
assessment as described earlier, colonoscopists captured at
least five images from each polyp using narrow band imag-
ing and magnification mode to feed the CADx system. The
CADx system then immediately provided the suggested
diagnosis of the polyp as either neoplastic or nonneoplastic
according to the algorithms described earlier (Fig. 1).

Step 3 was performed after standard clinical assessment and
after CADx assessment, respectively. The colonoscopist
again scored the confidence level of classification prediction
of each polyp as either “high” or “low” and relayed it to the
study nurse for immediate capture in the study database.

In step 4, all polyps were removed by snare polypectomy,
biopsy forceps, or endoscopic mucosal resection and submit-
ted for histopathologic evaluation. All polyps were evaluated
by board-certified (the local board for each country of prac-
tice) gastrointestinal pathologists at each center. All patholo-
gists were blinded to colonoscopic diagnoses of the polyps.

All polyps that were diagnosed histopathologically as non-
neoplastic but had been considered by the colonoscopist

as neoplastic with high confidence after standard assess-
ment were submitted for a second histopathologic review
by a different pathologist. The second pathologist was
blinded to the first histopathologic diagnosis. See Supple-
mentary Appendix, Section 2 for details.

STUDY END POINTS

The primary endpoint of the study was to compare the sen-
sitivity of identifying small (�5 mm in diameter) polyps in
the rectosigmoid colon as adenomas during colonoscopy
with the combination of standard visual inspection and the
CADx system, and of standard visual inspection alone,
compared with gold-standard histopathology.

Secondary outcome measures included specificity, positive
predictive value (PPV), negative predictive value (NPV),
rate of high-confidence optical diagnosis, and rate of rec-
tosigmoid polyps of 5 mm or less with adequate images
captured for CADx analysis.

Polyps that were not removed, those that were nonepithelial
(neuroendocrine polyps, lymphoid aggregates), and those with
unsuccessful image capturing were excluded from analyses.

SAMPLE SIZE CALCULATION

On the basis of a pilot study in Japan, we assumed a 6.7-
percentage-point increase in sensitivity with the CADx
system compared with the standard method, assuming dis-
cordance between the two methods of 14.4 percentage
points (see the study protocol at evidence.nejm.org). We
considered this difference to be clinically meaningful

Figure 1. The Standard Method and the Combined Use of the Standard Method and the CADx System.
The Cybernet Systems EndoBRAIN system was used in this study. CADx denotes computer-aided diagnosis.

NEJM EVIDENCE 4

For personal use only. No other uses without permission. Copyright © 2022 Massachusetts Medical Society.

NEJM Evidence is produced by NEJM Group, a division of the Massachusetts Medical Society.
Downloaded from evidence.nejm.org by Mary Jane Medas on June 14, 2023. For personal use only.
 No other uses without permission. Copyright © 2022 Massachusetts Medical Society. All rights reserved. 

https://ai.nejm.org/


Back to Table of Contents

AI & Machine Learning in Medicine        81ai.nejm.org

to uncover. With a statistical power of 90%, the required
sample size using a two-sided 5% significance level was 345
neoplastic polyps. We estimated that we needed to enroll
767 patients on the basis of a 25% prevalence of neoplastic
eligible polyps, a mean of two eligible polyps per patient,
and 90% of polyps with satisfactory prediction by the
CADx system. The 90% threshold was motivated by U.S.
guidelines recommending an NPV of 90% or greater for
optical diagnosis of small neoplastic polyps.5

STATISTICAL ANALYSES

Sensitivity, specificity, PPV, and NPV for the standard method
and the CADx method compared with histopathology, respec-
tively, were estimated using generalized estimating equation
analyses with exchangeable correlation accounting for correla-
tion between multiple polyps within one patient. We did not
account for clustering within colonoscopist, site, or country.
We calculated 95% confidence intervals (CIs) using sandwich
estimates of the variance. Sensitivity and specificity of the two
interventions were compared using an exact version of the
McNemar test. We did not adjust for multiple comparisons.
Polyps that were not removed, from which specimens were
lost after removal, or that had nonepithelial histology were
excluded from analyses. All tests were performed in relation to
the 0.05 significance level and used R version 3.4.1 and Stata
version 17 software.

In primary analyses of sensitivity and specificity, sessile
serrated lesions were classified as neoplastic (similar to
adenomas). In secondary analyses, sessile serrated lesions
were classified as nonneoplastic (no adenomas).

No interim analysis was planned at the study start in 2019.
Because of slow recruitment during the Covid-19 pandemic,
the study team decided to amend the protocol and performed
a blinded interim analysis in April 2020. The interim analysis
applied an a priori stopping rule for futility (see details in the
study protocol on evidence.nejm.org), which was not met.
Thus, the study was continued until preplanned recruitment
was fulfilled. Because of the blinded nature of the interim
analysis, we did not adjust for it in the final analysis.

Results

PATIENTS

The median age of patients included in analyses was
67 years (interquartile range [IQR], 60 to 74), and 63.1%

were men (Table 1). Of the 1242 patients who underwent
study colonoscopy, 525 had 903 eligible rectosigmoid pol-
yps that received visual inspection.

Of the 903 eligible polyps, 11 were not included in analy-
ses. Of these, 5 were not removed, 3 were lost after
removal, and 3 were nonepithelial (two neuroendocrine
tumors and one leiomyoma). Consequently, 892 polyps
(359 neoplastic polyps and 533 nonneoplastic polyps) from
518 patients were included in the analyses (Fig. 2). The
distribution of sex and age of the participants reflects
real-world clinical practice (Table S2). We did not register
the race and ethnicity of participants.

Twenty-two colonoscopists, including 20 physicians and
two nurse endoscopists, performed the study procedures.

COLONOSCOPY PERFORMANCE AND
COMPLICATIONS

Baseline characteristics of patients and colonoscopy per-
formance are shown in Table 2. Most colonoscopies were
for colorectal cancer screening or polyp surveillance. The
median colonoscopy insertion time was 12 minutes (IQR,
8 to 19), and the median withdrawal time with polyp
assessments and polypectomies was 28 minutes (IQR, 20
to 40). We did not observe any complications or adverse
events related to the colonoscopy or to polyp assessment
or removal.

POLYP CHARACTERISTICS

The 518 eligible patients had 892 detected and removed
polyps that were 5 mm or less in the rectosigmoid colon.
On the basis of the histopathologic examination of the
removed polyps, 359 were neoplastic. Of these, 319 were
tubular adenomas with low-grade dysplasia, 2 were tubu-
lar adenomas with high-grade dysplasia, 9 were tubulovil-
lous adenomas with low-grade dysplasia, and 3 were
tubulovillous adenomas with high-grade dysplasia. Of the
26 remaining polyps that were categorized as neoplastic,
7 were traditional serrated adenomas with low-grade
dysplasia and 19 were sessile serrated lesions without dys-
plasia. On the basis of histopathologic examination, 533
polyps were found to be nonneoplastic. Of these, 485 were
hyperplastic polyps, 8 were inflammatory polyps, and 40
had other nonneoplastic histology.

PERFORMANCE OF OPTICAL DIAGNOSIS

In primary analyses, the sensitivity for neoplastic polyps
was 88.4% (95% CI, 84.3 to 91.5) with the standard
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method and 90.4% (95% CI, 86.8 to 93.1) with the CADx
method (P=0.33). The percentage of discordant pairs
between the standard method and the CADx method was
7.2% (Fig. 3).

The specificity for neoplastic polyps was 83.1% (95% CI, 79.2
to 86.4) with the standard method and 85.9% (95% CI, 82.3
to 88.8) with the CADx method. The discordance between
the standard method and the CADxmethod was 7.9%.

The percentage of polyp assessments with high confidence
for categorization into neoplastic or nonneoplastic polyp
increased from 74.2% (95% CI, 70.9 to 77.3) with the stan-
dard method to 92.6% (95% CI, 90.6 to 94.3) with the
CADx method.

In secondary analyses classifying sessile serrated lesions
as nonneoplastic, the sensitivity for neoplastic polyps was
91.2% (95% CI, 87.5 to 93.9) with the standard method
and 94.1% (95% CI, 91.2 to 96.2) with the CADx method.
The specificity for neoplastic polyps was 82.3% (95% CI,
78.4 to 85.6) with the standard method and 85.5% (95%
CI, 81.9 to 88.5) with the CADx method. For separate cen-
ter analyses, see Tables S3 through S8.

Discussion
Implementation of AI in cancer screening and clinical
diagnosis requires proof of benefits from high-quality clini-
cal studies. Our international multicenter study assessed
the incremental gain of a specific CADx AI system for
real-time polyp assessment during colonoscopy. Our study
indicates that real-time AI with CADx may not signifi-
cantly increase the sensitivity for small neoplastic polyps.
However, CADx may improve specificity for optical diag-
nosis of small neoplastic polyps and increase colonoscopist
confidence with visual diagnosis of polyps.

AI polyp detection tools (so-called computer-aided polyp
detection) during colonoscopy could potentially increase
detection of small polyps by up to 50%.15 While this
potentially could increase screening benefit, it also
increases health care costs, risk of overtreatment, and
patient burden.16 Most additionally detected polyps are
small ones in the distal colon and the rectum, and many
of these are nonneoplastic; that is, they do not need to be
removed if reliable, real-time classification were possible.
One may further argue that removal of small polyps con-
tributes little in terms of cancer prevention.17

The “diagnose-and-leave” strategy recently proposed by the
American Society for Gastrointestinal Endoscopy (ASGE)
suggests not to remove small polyps during colonoscopy if
they can be reliably classified (defined as NPV of �90%)
by optical diagnosis as nonneoplastic.5 This strategy is not
easy to apply because such reliable diagnosis is difficult to
achieve with standard colonoscopy systems. Our study pro-
vides high-quality data to address this critical issue.

Our main outcome did not reach the prespecified increase
of 6.7% in sensitivity with CADx, which was based on pre-
clinical testing, observational studies, and a single-center
study. Our study thus emphasizes the importance of rigor-
ous clinical studies to assess AI performance and quanti-
fies the added value and the limitation of CADx in
colonoscopy.

According to our results, CADx may not reduce overlook-
ing adenomas during visual inspection of polyps. How-
ever, our study showed a potential improvement in
specificity for neoplastic polyps, albeit one in which we
cannot declare statistical significance because our primary
outcome failed to reach that level with the CADx system.
There was also a trend toward improved confidence in

Table 1. Baseline Characteristics of 518 Included Patients and Their
Colonoscopies.*

Characteristic Value

Median age — yr 67 (60 to 74)

Sex

Men 327 (63.1)

Women 191 (36.9)

Colonoscopy Indication

Screening colonoscopy
(primary screening or fecal testing)

266 (51.4)

Polyp surveillance colonoscopy 161(31.1)

Clinical signs or symptoms 67 (12.9)

Therapy of large polyps 23 (4.4)

Other 1 (0.2)

Median insertion time — min 12 (8 to 19)

Median withdrawal time — min 28 (20 to 40)

Preparation quality good or very good† 481 (92.9)

* Data are presented as the median (interquartile range) or no. (%).
† The Boston Bowel Preparation Scale is a 9-point assessment scale for
cleaning quality during colonoscopy. The colon is divided into three
segments: proximal, transverse, and distal. Each segment is classified
from 0 to 3 depending on the degree of soiling. The sum total of the
three segments represents the degree of soiling (�5 points indicates
poor bowel preparation; 6–7 good bowel preparation, and $8 very good
bowel preparation).9
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optical diagnosis of polyps. If this can be established
through additional clinical trials, it could potentially con-
tribute to a clinically important reduction in the unneces-
sary removal of small nonneoplastic polyps by giving the
operator the ability to make a high-confidence prediction
during a procedure.5

PPVs and NPVs are influenced by the prevalence of dis-
ease (polyps) and do not adequately assess tools or devices
as such. Therefore, our primary outcomes of interest were
sensitivity and specificity. However, we also analyzed the
predictive values of CADx and observed increments of
1.3% for NPV and 3.1% for PPV with CADx (Table 3). Our
results are consistent with the hypothesis that CADx can
fulfill the criteria for the diagnose-and-leave strategy with
95% CIs above the NPV threshold of 90%.

The strengths of the current study are the comparison
with both non-AI optical diagnosis and gold-standard
histopathology for all included polyps; the inclusion of
centers from different countries and continents; and the
focus on endoscopists with average experience and work-
load, mimicking real-world colonoscopy practice. A limita-
tion of this study is the inability of the CADx tool to
identify sessile serrated polyps, a recently recognized
polyp type with likely neoplastic potential. To alleviate this
challenge, we conducted two analyses (one classifying ses-
sile serrated polyps as neoplastic and the other classifying
them as nonneoplastic) without significant differences in
the performance of the CADx tool. Another limitation is the
learning curve of the colonoscopists during the study period
due to the prospective study design, which may contribute
to underestimation of the CADx performance. However, we

1289 Patients were assessed for 
eligibility

47 Withdrew their consent

1242 Had a colonoscopy in the 
study

1154 Had a complete study 
colonoscopy 

51 Had incomplete colonoscopy 

37 Did not meet other criteria 

529 Patients had 913 
rectosigmoid polyps ≤5 mm

625 Had no rectosigmoid polyps 
≤5 mm 

525 Patients had 903 polyps that 
were assessed with visual 

inspection

521 Patients had 898 polyps that 
were removed

10 Polyps were not assessed 
with visual inspection

5 Polyps were not removed

3 Polyps were lost after removal 

3 Lesions were nonepithelial (2 
neuroendocrine tumors and 1 
leiomyoma)

518 Patients had 892 polyps 

(359 Neoplastic and 533 Nonneoplastic)

Figure 2. Study Flow Chart.
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may also have overestimated nonexpert endoscopists’ per-
formance because the sensitivity we found to predict adeno-
mas, without the aid of CADx, was 88.4%, which is slightly
higher than that reported in previous studies.18,19 This may
be related to the fact that our study was conducted at teach-
ing hospitals with endoscopy training programs.

Finally, the colonoscopes used in the current study are not
widely used today, although they are commercially avail-
able in Europe, the Middle East, and Asia. Provided that
colonoscopes with surface enhancement functions facili-
tating CADx systems like the one we tested prove to be
useful, they would likely become used more widely.

Table 2. Characteristics of the 892 Small Polyps (£ 5 mm in diameter) in the Distal Colon and the Rectum.*

Characteristic Neoplastic Polyps (n5359) Nonneoplastic Polyps (n5533)

Median size — mm 4 (3 to 5) 3 (2 to 3)

Location

Sigmoid colon 274 (76.3) 260 (48.8)

Rectum 85 (23.7) 273 (51.2)

Morphology†

Polypoid (type Is or Ip) 175 (48.7) 109 (20.5)

Nonpolypoid (type IIa) 184 (51.3) 424 (79.5)

Removal method

Snare polypectomy 247 (68.8) 265 (49.7)

Forceps 65 (18.1) 258 (48.4)

Endoscopic mucosal resection 46 (12.8) 10 (1.9)

* Data are presented as the median (interquartile range) or no. (%). Sessile serrated lesions were classified as neoplastic polyps in the primary
analysis.

† The Paris classification was used. Morphologic classification systems for polyps during colonoscopy classify polyps into polypoid and nonpolypoid,
with six different subtypes.12
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Figure 3. Sensitivity, Specificity, and Confidence of Diagnosis of Standard and AI-Derived CADx Optical
Diagnosis of Small Rectosigmoid Polyps during Colonoscopy Compared with Histopathology.

All bars are represented with corresponding 95% confidence intervals. AI denotes artificial intelligence and CADx computer-aided
diagnosis.
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Our study suggests that the use of CADx helped the pro-
vider have higher confidence in optical diagnosis. If this
can be replicated, it could contribute to cost reduction
because more polyps could be left in situ. Better confi-
dence comes at a cost; CADx assessment prolongs colo-
noscopy procedure time, which increases health care cost.
In previous studies, we demonstrated that the time neces-
sary for CADx assessment of one small polyp, as applied
in this study, is about 40 seconds.6 We consider this addi-
tional time well spent with regard to the gain in terms of
reduction of unnecessary removal of polyps and histopath-
ologic assessment. Future cost-effectiveness studies may
explore whether the prolonged procedure time pays off
with the benefit of reduced polypectomies.

In conclusion, real-time assessment with CADx did not
significantly increase sensitivity for neoplastic polyps dur-
ing colonoscopy. There are promising signals for increased
specificity and improved confidence of optical diagnosis,
but our statistical approach precludes us from making any
definitive statements about the identification and removal
of small rectosigmoid polyps using the colonoscopy sys-
tem we employed.
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